Suppr超能文献

在大型数据集上使用集成深度神经网络理解卡通情感。

Understanding cartoon emotion using integrated deep neural network on large dataset.

作者信息

Jain Nikita, Gupta Vedika, Shubham Shubham, Madan Agam, Chaudhary Ankit, Santosh K C

机构信息

Department of Computer Science and Engineering, Bharati Vidyapeeth's College of Engineering, Dehi, India.

KC's PAMI Research Lab - Computer Science, University of South Dakota, 414 E Clark St, Vermillion, SD 57069 USA.

出版信息

Neural Comput Appl. 2022;34(24):21481-21501. doi: 10.1007/s00521-021-06003-9. Epub 2021 Apr 21.

Abstract

Emotion is an instinctive or intuitive feeling as distinguished from reasoning or knowledge. It varies over time, since it is a natural instinctive state of mind deriving from one's circumstances, mood, or relationships with others. Since emotions vary over time, it is important to understand and analyze them appropriately. Existing works have mostly focused well on recognizing basic emotions from human faces. However, the emotion recognition from cartoon images has not been extensively covered. Therefore, in this paper, we present an integrated Deep Neural Network (DNN) approach that deals with recognizing emotions from cartoon images. Since state-of-works do not have large amount of data, we collected a dataset of size 8 K from two cartoon characters: & with four different emotions, namely happy, sad, angry, and surprise. The proposed integrated DNN approach, trained on a large dataset consisting of animations for both the characters ( and ), correctly identifies the character, segments their face masks, and recognizes the consequent emotions with an accuracy score of 0.96. The approach utilizes Mask R-CNN for character detection and state-of-the-art deep learning models, namely ResNet-50, MobileNetV2, InceptionV3, and VGG 16 for emotion classification. In our study, to classify emotions, VGG 16 outperforms others with an accuracy of 96% and F1 score of 0.85. The proposed integrated DNN outperforms the state-of-the-art approaches.

摘要

情感是一种本能或直觉的感觉,有别于推理或知识。它会随时间变化,因为它是一种源自个人所处环境、情绪或与他人关系的自然本能心理状态。由于情感随时间变化,因此适当地理解和分析它们很重要。现有研究大多专注于从人脸识别基本情绪。然而,从卡通图像中进行情感识别尚未得到广泛研究。因此,在本文中,我们提出了一种集成深度神经网络(DNN)方法,用于处理从卡通图像中识别情感。由于现有研究没有大量数据,我们从两个卡通角色(和)收集了一个大小为8K的数据集,其中包含四种不同的情绪,即开心、悲伤、愤怒和惊讶。所提出的集成DNN方法在由两个角色(和)的动画组成的大型数据集上进行训练,能够正确识别角色,分割出他们的面部掩码,并以0.96的准确率识别出相应的情绪。该方法利用Mask R-CNN进行角色检测,并使用最先进的深度学习模型,即ResNet-50、MobileNetV2、InceptionV3和VGG 16进行情感分类。在我们的研究中,为了对情感进行分类,VGG 16的表现优于其他模型,准确率为96%,F1分数为0.85。所提出的集成DNN优于现有最先进的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa3d/8059693/1eb2bc914df5/521_2021_6003_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验