Laboratoire Matière et Systèmes Complexes, Universite de Paris, UMR 7057 CNRS, Paris, France.
Universite d'Evry Val d'Essone, Evry Courcouronnes, France.
J Comput Neurosci. 2021 Nov;49(4):375-394. doi: 10.1007/s10827-021-00786-5. Epub 2021 Apr 27.
We propose a novel phase based analysis with the purpose of quantifying the periodic bursts of activity observed in various neuronal systems. The way bursts are intiated and propagate in a spatial network is still insufficiently characterized. In particular, we investigate here how these spatiotemporal dynamics depend on the mean connection length. We use a simplified description of a neuron's state as a time varying phase between firings. This leads to a definition of network bursts, that does not depend on the practitioner's individual judgment as the usage of subjective thresholds and time scales. This allows both an easy and objective characterization of the bursting dynamics, only depending on system's proper scales. Our approach thus ensures more reliable and reproducible measurements. We here use it to describe the spatiotemporal processes in networks of intrinsically oscillating neurons. The analysis rigorously reveals the role of the mean connectivity length in spatially embedded networks in determining the existence of "leader" neurons during burst initiation, a feature incompletely understood observed in several neuronal cultures experiments. The precise definition of a burst with our method allowed us to rigorously characterize the initiation dynamics of bursts and show how it depends on the mean connectivity length. Although presented with simulations, the methodology can be applied to other forms of neuronal spatiotemporal data. As shown in a preliminary study with MEA recordings, it is not limited to in silico modeling.
我们提出了一种新的基于相位的分析方法,目的是量化各种神经元系统中观察到的周期性活动爆发。爆发在空间网络中发起和传播的方式仍未得到充分描述。特别是,我们在这里研究这些时空动力学如何依赖于平均连接长度。我们将神经元状态的简化描述表示为发射之间的时变相位。这导致了网络爆发的定义,该定义不依赖于从业者的个人判断,例如使用主观阈值和时间尺度。这允许仅依赖于系统的适当尺度,对爆发动力学进行简单且客观的描述。因此,我们的方法确保了更可靠和可重复的测量。我们在这里使用它来描述内在振荡神经元网络中的时空过程。该分析严格揭示了在空间嵌入网络中,平均连接长度在确定爆发发起期间“主导”神经元的存在方面的作用,这是在几个神经元培养实验中观察到的一个不完全理解的特征。我们的方法对爆发的精确定义允许我们严格表征爆发的发起动力学,并展示它如何依赖于平均连接长度。尽管是在模拟中呈现的,但该方法可以应用于其他形式的神经元时空数据。如与 MEA 记录的初步研究所示,它不仅限于计算机建模。