Suppr超能文献

模块化架构促进了神经元网络中受噪声驱动的同步控制。

Modular architecture facilitates noise-driven control of synchrony in neuronal networks.

机构信息

Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan.

Graduate School of Engineering, Tohoku University, Sendai, Japan.

出版信息

Sci Adv. 2023 Aug 25;9(34):eade1755. doi: 10.1126/sciadv.ade1755.

Abstract

High-level information processing in the mammalian cortex requires both segregated processing in specialized circuits and integration across multiple circuits. One possible way to implement these seemingly opposing demands is by flexibly switching between states with different levels of synchrony. However, the mechanisms behind the control of complex synchronization patterns in neuronal networks remain elusive. Here, we use precision neuroengineering to manipulate and stimulate networks of cortical neurons in vitro, in combination with an in silico model of spiking neurons and a mesoscopic model of stochastically coupled modules to show that (i) a modular architecture enhances the sensitivity of the network to noise delivered as external asynchronous stimulation and that (ii) the persistent depletion of synaptic resources in stimulated neurons is the underlying mechanism for this effect. Together, our results demonstrate that the inherent dynamical state in structured networks of excitable units is determined by both its modular architecture and the properties of the external inputs.

摘要

哺乳动物大脑皮层中的高级信息处理需要在专门的电路中进行分离处理,并在多个电路之间进行整合。一种可能的实现方法是通过在具有不同同步水平的状态之间灵活切换来实现这些看似矛盾的要求。然而,神经元网络中复杂同步模式控制的机制仍然难以捉摸。在这里,我们使用精密神经工程技术在体外操纵和刺激皮层神经元网络,结合尖峰神经元的计算模型和随机耦合模块的介观模型,表明(i)模块化架构增强了网络对作为外部异步刺激传递的噪声的敏感性,以及(ii)被刺激神经元中突触资源的持续耗竭是这种效应的潜在机制。总的来说,我们的结果表明,兴奋性单元结构网络的固有动力学状态由其模块化架构和外部输入的特性共同决定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8641/10456864/c6b876c04495/sciadv.ade1755-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验