Suppr超能文献

基于深度学习的根治性前列腺切除术标本图像分析的临床意义

Clinical implications of deep learning based image analysis of whole radical prostatectomy specimens.

作者信息

Kwak Tae-Yeong, Lee Chan Ho, Park Won Young, Ku Ja Yoon, Jeong Chang Wook, Hwang Eu Chang, Choi Seock Hwan, Cho Joonyoung, Chang Hyeyoon, Kim Kyung Hwan, Kang Byeong Jin, Kim Sun Woo, Ha Hong Koo

机构信息

Deep Bio Inc., Seoul, 08380, Republic of Korea.

Department of Urology, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, 47392, Republic of Korea.

出版信息

Sci Rep. 2025 Mar 31;15(1):11006. doi: 10.1038/s41598-025-95267-5.

Abstract

Prostate cancer (PCa) diagnosis faces significant challenges due to its complex pathological characteristics and insufficient pathologist resources. While deep learning-based image analysis (DLIA) shows promise in enhancing diagnostic accuracy, its application to radical prostatectomy (RP) specimens remains underexplored. In this study, we evaluated the clinical feasibility and prognostic value of a DLIA algorithm for Gleason grading and tumor quantification on whole RP specimens. Using 29,646 digitized H&E-stained slides from 992 patients who underwent RP, we compared the case-level algorithm results with pathologist assessments for the International Society of Urological Pathology grade groups (GG), tumor volumes (TV), and percent tumor volumes (PTV). We also evaluated their prognostic performance in predicting biochemical progression-free survival (BPFS). Pathologists identified cancer in 986 cases and assigned GG in 980, while the DLIA algorithm identified cancer and assigned GG to all cases without omission. DLIA-assigned GG showed fair concordance with pathologist assessments (linear-weighted Cohen's kappa: 0.374) and demonstrated similar efficacy in predicting BPFS (c-index: 0.644 for DLIA vs. 0.654 for pathologists; p = 0.52). In tumor quantification, DLIA-measured TV and PTV were strongly correlated with pathologist-based measurements (Pearson's correlation coefficient: 0.830 and 0.846, respectively), but showed stronger efficacy in BPFS prediction, with c-index values of 0.657 and 0.672 compared to 0.622 and 0.641, respectively. Incorporating DLIA-derived PTV into the CAPRA-S score significantly improved its predictive accuracy for BCR (p = 0.006), increasing the c-index from 0.704 to 0.715. Our findings indicate that DLIA algorithms can enhance the accuracy of Gleason grading and tumor quantification in RP specimens, providing valuable support in clinical decision-making for PCa management.

摘要

前列腺癌(PCa)的诊断面临重大挑战,原因在于其复杂的病理特征以及病理学家资源不足。尽管基于深度学习的图像分析(DLIA)在提高诊断准确性方面显示出前景,但其在根治性前列腺切除术(RP)标本中的应用仍未得到充分探索。在本研究中,我们评估了一种DLIA算法在全RP标本上进行Gleason分级和肿瘤定量的临床可行性及预后价值。我们使用了来自992例行RP患者的29,646张数字化苏木精-伊红(H&E)染色切片,将病例级算法结果与病理学家对国际泌尿病理学会分级组(GG)、肿瘤体积(TV)和肿瘤体积百分比(PTV)的评估进行比较。我们还评估了它们在预测无生化进展生存期(BPFS)方面的预后性能。病理学家在986例中识别出癌症,并在980例中分配了GG,而DLIA算法识别出所有病例中的癌症并分配了GG,无一遗漏。DLIA分配的GG与病理学家的评估显示出中等一致性(线性加权Cohen's kappa:0.374),并且在预测BPFS方面表现出相似的效能(DLIA的c指数为0.644,病理学家的为0.654;p = 0.52)。在肿瘤定量方面,DLIA测量的TV和PTV与基于病理学家的测量结果高度相关(Pearson相关系数分别为0.830和0.846),但在BPFS预测中表现出更强的效能,c指数值分别为0.657和0.672,而病理学家的分别为0.622和0.641。将DLIA得出的PTV纳入CAPRA-S评分显著提高了其对生化复发(BCR)的预测准确性(p = 0.006),c指数从0.704提高到0.715。我们的研究结果表明,DLIA算法可以提高RP标本中Gleason分级和肿瘤定量的准确性,为PCa管理的临床决策提供有价值的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/11958791/2194cf38bc3d/41598_2025_95267_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验