Department of Biology, University of Nevada, Reno, Nevada 89557.
Department of Biology, University of Nevada, Reno, Nevada 89557
J Neurosci. 2021 May 26;41(21):4607-4619. doi: 10.1523/JNEUROSCI.1207-20.2021. Epub 2021 Apr 27.
Early postnatal experience shapes both inhibitory and excitatory networks in the hippocampus. However, the underlying circuit plasticity is unclear. Using an enriched environment (EE) paradigm during the preweaning period in mice of either sex, we assessed the circuit plasticity of inhibitory cell types in the hippocampus. We found that cholecystokinin (CCK)-expressing basket cells strongly increased somatic inhibition on the excitatory granular cells (GCs) following EE, whereas another pivotal inhibitory cell type, parvalbumin (PV)-expressing cells, did not show changes. Using electrophysiological analysis and the use of cannabinoid receptor 1 (CB1R) agonist WIN 55 212-2, we demonstrate that the change in somatic inhibition from CCK+ neurons increases CB1R-mediated inhibition in the circuit. By inhibiting activity of the entorhinal cortex (EC) using a chemogenetic approach, we further demonstrate that the activity of the projections from the EC mediates the developmental assembly of CCK+ basket cell network. Altogether, our study places the experience-dependent remodeling of CCK+ basket cell innervation as a central process to adjust inhibition in the dentate gyrus and shows that cortical inputs to the hippocampus play an instructional role in controlling the refinement of the synaptic connections during the preweaning period. Brain plasticity is triggered by experience during postnatal brain development and shapes the maturing neural circuits. In humans, altered experience-dependent plasticity can have long-lasting detrimental effects on circuit function and lead to psychiatric disorders. Yet, the cellular mechanisms governing how early experience fine-tunes the maturing synaptic network is not fully understood. Here, taking advantage of an enrichment-housing paradigm, we unravel a new plasticity mechanism involved in the maintenance of the inhibitory to excitatory balance in the hippocampus. Our findings demonstrate that cortical activity instructs the assembly of the CCK+ basket cell network. Considering the importance of this specific cell type for learning and memory, experience-dependent remodeling of CCK+ cells may be a critical determinant for establishing appropriate neural networks.
早期的产后经历塑造了海马体中的抑制性和兴奋性网络。然而,潜在的电路可塑性尚不清楚。在雄性和雌性小鼠的断奶前期间使用丰富环境(EE)范式,我们评估了海马体中抑制性细胞类型的电路可塑性。我们发现胆囊收缩素(CCK)表达的篮状细胞在 EE 后强烈增加了对兴奋性颗粒细胞(GC)的体抑制,而另一种关键的抑制性细胞类型,即 parvalbumin(PV)表达的细胞则没有变化。使用电生理分析和大麻素受体 1(CB1R)激动剂 WIN 55 212-2,我们证明了来自 CCK+神经元的体抑制变化增加了电路中的 CB1R 介导的抑制。通过使用化学遗传方法抑制内嗅皮层(EC)的活动,我们进一步证明了来自 EC 的投射的活动介导了 CCK+篮状细胞网络的发育组装。总之,我们的研究将 CCK+篮状细胞支配的经验依赖性重塑作为调整齿状回抑制的核心过程,并表明海马体的皮质输入在控制突触连接在断奶前期间的细化中起着指令作用。大脑可塑性是由产后大脑发育过程中的经验触发的,塑造了成熟的神经回路。在人类中,改变的经验依赖性可塑性会对回路功能产生持久的不利影响,并导致精神障碍。然而,控制早期经验如何微调成熟的突触网络的细胞机制尚不完全清楚。在这里,我们利用丰富住房范式,揭示了一种新的可塑性机制,涉及海马体中抑制性与兴奋性平衡的维持。我们的研究结果表明,皮质活动指导了 CCK+篮状细胞网络的组装。考虑到这种特定细胞类型对学习和记忆的重要性,CCK+细胞的经验依赖性重塑可能是建立适当神经网络的关键决定因素。