Photonics Laboratory, ETH Zurich, Zurich, Switzerland.
Faculty of Physics, University of Vienna, Vienna, Austria.
Nat Commun. 2021 Apr 27;12(1):2446. doi: 10.1038/s41467-021-22647-6.
Rare transitions between long-lived metastable states underlie a great variety of physical, chemical and biological processes. Our quantitative understanding of reactive mechanisms has been driven forward by the insights of transition state theory and in particular by Kramers' dynamical framework. Its predictions, however, do not apply to systems that feature non-conservative forces or correlated noise histories. An important class of such systems are active particles, prominent in both biology and nanotechnology. Here, we study the active escape dynamics of a silica nanoparticle trapped in a bistable potential. We introduce activity by applying an engineered stochastic force that emulates self-propulsion. Our experiments, supported by a theoretical analysis, reveal the existence of an optimal correlation time that maximises the transition rate. We discuss the origins of this active turnover, reminiscent of the much celebrated Kramers turnover. Our work establishes a versatile experimental platform to study single particle dynamics in non-equilibrium settings.
在各种物理、化学和生物过程中,长寿命亚稳态之间的罕见转变是其基础。我们对反应机制的定量理解,得益于过渡态理论的深刻见解,尤其是得益于克拉默斯的动力学框架。然而,其预测并不适用于具有非保守力或相关噪声历史的系统。一个重要的此类系统是活性粒子,它们在生物学和纳米技术中都很突出。在这里,我们研究了被困在双稳态势中的二氧化硅纳米颗粒的主动逃逸动力学。我们通过施加模拟自推进的工程化随机力来引入活性。我们的实验得到了理论分析的支持,揭示了存在一个最优相关时间,它使跃迁率最大化。我们讨论了这种主动翻转的起源,它让人联想到广为人知的克拉默斯翻转。我们的工作建立了一个通用的实验平台,用于研究非平衡环境中的单个粒子动力学。