Suppr超能文献

利用带有注视点和合成扫视模式的图像预测自闭症诊断

PREDICTING AUTISM DIAGNOSIS USING IMAGE WITH FIXATIONS AND SYNTHETIC SACCADE PATTERNS.

作者信息

Wu Chongruo, Liaqat Sidrah, Cheung Sen-Ching, Chuah Chen-Nee, Ozonoff Sally

机构信息

University of California, Davis.

University of Kentucky.

出版信息

IEEE Int Conf Multimed Expo Workshops. 2019 Jul;2019:647-650. doi: 10.1109/ICMEW.2019.00125. Epub 2019 Aug 15.

Abstract

Signs of autism spectrum disorder (ASD) emerge in the first year of life in many children, but diagnosis is typically made much later, at an average age of 4 years in the United States. Early intervention is highly effective for young children with ASD, but is typically reserved for children with a formal diagnosis, making accurate identification as early as possible imperative. A screening tool that could identify ASD risk during infancy offers the opportunity for intervention before the full set of symptoms is present. In this paper, we propose two machine learning methods, synthetic saccade approach and image based approach, to automatically classify ASD given the scanpath data from children on free viewing of natural images. The first approach uses a generative model of synthetic saccade patterns to represent the baseline scan-path from a typical non-ASD individual and combines it with the input scanpath as well as other auxiliary data as inputs to a deep learning classifier. The second approach adopts a more holistic image based approach by feeding the input image and a sequence of fixation maps into a state-of-the-art convolutional neural network. Our experiments indicate that we can get 65.41% accuracy on the validation dataset.

摘要

许多儿童在一岁内就会出现自闭症谱系障碍(ASD)的迹象,但通常要到更晚的时候才会确诊,在美国平均确诊年龄为4岁。早期干预对患有ASD的幼儿非常有效,但通常只针对正式确诊的儿童,因此尽早进行准确识别至关重要。一种能够在婴儿期识别ASD风险的筛查工具,为在全套症状出现之前进行干预提供了机会。在本文中,我们提出了两种机器学习方法,即合成扫视方法和基于图像的方法,以根据儿童自由观看自然图像时的扫描路径数据自动对ASD进行分类。第一种方法使用合成扫视模式的生成模型来表示典型非ASD个体的基线扫描路径,并将其与输入扫描路径以及其他辅助数据相结合,作为深度学习分类器的输入。第二种方法采用更全面的基于图像的方法,将输入图像和一系列注视点图输入到一个先进的卷积神经网络中。我们的实验表明,在验证数据集上我们可以获得65.41%的准确率。

相似文献

1
PREDICTING AUTISM DIAGNOSIS USING IMAGE WITH FIXATIONS AND SYNTHETIC SACCADE PATTERNS.利用带有注视点和合成扫视模式的图像预测自闭症诊断
IEEE Int Conf Multimed Expo Workshops. 2019 Jul;2019:647-650. doi: 10.1109/ICMEW.2019.00125. Epub 2019 Aug 15.
10
Learning to Predict Eye Fixations via Multiresolution Convolutional Neural Networks.通过多分辨率卷积神经网络学习预测眼动。
IEEE Trans Neural Netw Learn Syst. 2018 Feb;29(2):392-404. doi: 10.1109/TNNLS.2016.2628878. Epub 2016 Nov 29.

本文引用的文献

2
Age at First Identification of Autism Spectrum Disorder: An Analysis of Two US Surveys.首次确诊自闭症谱系障碍的年龄:两项美国调查分析
J Am Acad Child Adolesc Psychiatry. 2017 Apr;56(4):313-320. doi: 10.1016/j.jaac.2017.01.012. Epub 2017 Feb 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验