Suppr超能文献

半竞争风险数据的因果推断。

Causal inference for semi-competing risks data.

机构信息

Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel.

出版信息

Biostatistics. 2022 Oct 14;23(4):1115-1132. doi: 10.1093/biostatistics/kxab049.

Abstract

The causal effects of Apolipoprotein E $\epsilon4$ allele (APOE) on late-onset Alzheimer's disease (AD) and death are complicated to define because AD may occur under one intervention but not under the other, and because AD occurrence may affect age of death. In this article, this dual outcome scenario is studied using the semi-competing risks framework for time-to-event data. Two event times are of interest: a nonterminal event time (age at AD diagnosis), and a terminal event time (age at death). AD diagnosis time is observed only if it precedes death, which may occur before or after AD. We propose new estimands for capturing the causal effect of APOE on AD and death. Our proposal is based on a stratification of the population with respect to the order of the two events. We present a novel assumption utilizing the time-to-event nature of the data, which is more flexible than the often-invoked monotonicity assumption. We derive results on partial identifiability, suggest a sensitivity analysis approach, and give conditions under which full identification is possible. Finally, we present and implement nonparametric and semiparametric estimation methods under right-censored semi-competing risks data for studying the complex effect of APOE on AD and death.

摘要

载脂蛋白 E $\epsilon4$ 等位基因 (APOE) 对迟发性阿尔茨海默病 (AD) 和死亡的因果效应很难定义,因为 AD 可能在一种干预下发生,而在另一种干预下不发生,而且 AD 的发生可能会影响死亡年龄。在本文中,使用半竞争风险框架研究了这种双重结果情况,用于时间事件数据。有两个感兴趣的事件时间:非终末事件时间(AD 诊断年龄)和终末事件时间(死亡年龄)。AD 诊断时间仅在死亡之前观察到,如果 AD 先于死亡发生,死亡可能发生在 AD 之前或之后。我们提出了新的估计量,用于捕获 APOE 对 AD 和死亡的因果效应。我们的建议基于人群对两个事件顺序的分层。我们提出了一种新的假设,利用数据的时间事件性质,比经常使用的单调性假设更灵活。我们得出了部分可识别性的结果,提出了一种敏感性分析方法,并给出了完全可识别的条件。最后,我们提出并实现了右删失半竞争风险数据下的非参数和半参数估计方法,用于研究 APOE 对 AD 和死亡的复杂影响。

相似文献

1
Causal inference for semi-competing risks data.
Biostatistics. 2022 Oct 14;23(4):1115-1132. doi: 10.1093/biostatistics/kxab049.
5
Gender effect on apolipoprotein E epsilon4 allele-associated risk for sporadic Alzheimer's disease.
Acta Neurol Scand. 1998 Jan;97(1):68-71. doi: 10.1111/j.1600-0404.1998.tb00611.x.
6
Modeling semi-competing risks data as a longitudinal bivariate process.
Biometrics. 2022 Sep;78(3):922-936. doi: 10.1111/biom.13480. Epub 2021 May 18.
10
Apolipoprotein E ε4 allele impairs cortical activity in healthy aging and Alzheimer's disease.
Behav Brain Res. 2022 Feb 26;420:113700. doi: 10.1016/j.bbr.2021.113700. Epub 2021 Dec 3.

引用本文的文献

3
The subtype-free average causal effect for heterogeneous disease etiology.
Biometrics. 2025 Jan 7;81(1). doi: 10.1093/biomtc/ujaf016.
4
Weighting methods for truncation by death in cluster-randomized trials.
Stat Methods Med Res. 2025 Mar;34(3):473-489. doi: 10.1177/09622802241309348. Epub 2025 Jan 31.
5
Selection Bias in Health Research: Quantifying, Eliminating, or Exacerbating Health Disparities?
Curr Epidemiol Rep. 2024 Mar;11(1):63-72. doi: 10.1007/s40471-023-00325-z. Epub 2023 Aug 30.
7
causalCmprsk: An R package for nonparametric and Cox-based estimation of average treatment effects in competing risks data.
Comput Methods Programs Biomed. 2023 Dec;242:107819. doi: 10.1016/j.cmpb.2023.107819. Epub 2023 Sep 21.
8
Modeling semi-competing risks data as a longitudinal bivariate process.
Biometrics. 2022 Sep;78(3):922-936. doi: 10.1111/biom.13480. Epub 2021 May 18.

本文引用的文献

1
Modeling semi-competing risks data as a longitudinal bivariate process.
Biometrics. 2022 Sep;78(3):922-936. doi: 10.1111/biom.13480. Epub 2021 May 18.
2
Reflection on modern methods: causal inference considerations for heterogeneous disease etiology.
Int J Epidemiol. 2021 Jul 9;50(3):1030-1037. doi: 10.1093/ije/dyaa278.
4
A causal framework for classical statistical estimands in failure-time settings with competing events.
Stat Med. 2020 Apr 15;39(8):1199-1236. doi: 10.1002/sim.8471. Epub 2020 Jan 27.
5
ApoE4: an emerging therapeutic target for Alzheimer's disease.
BMC Med. 2019 Mar 20;17(1):64. doi: 10.1186/s12916-019-1299-4.
6
Mediation analysis for a survival outcome with time-varying exposures, mediators, and confounders.
Stat Med. 2017 Nov 20;36(26):4153-4166. doi: 10.1002/sim.7426. Epub 2017 Aug 15.
7
Accelerated failure time models for semi-competing risks data in the presence of complex censoring.
Biometrics. 2017 Dec;73(4):1401-1412. doi: 10.1111/biom.12696. Epub 2017 Apr 10.
9
Identification and estimation of survivor average causal effects.
Stat Med. 2014 Sep 20;33(21):3601-28. doi: 10.1002/sim.6181. Epub 2014 May 29.
10
Semicompeting risks in aging research: methods, issues and needs.
Lifetime Data Anal. 2014 Oct;20(4):538-62. doi: 10.1007/s10985-014-9295-7. Epub 2014 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验