Suppr超能文献

一种用于二元协变量在稀疏时间点测量的生存分析的新校准框架。

A novel calibration framework for survival analysis when a binary covariate is measured at sparse time points.

机构信息

Departments of Biostatistics and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School Boston, MA, USA.

出版信息

Biostatistics. 2020 Apr 1;21(2):e148-e163. doi: 10.1093/biostatistics/kxy063.

Abstract

The goals in clinical and cohort studies often include evaluation of the association of a time-dependent binary treatment or exposure with a survival outcome. Recently, several impactful studies targeted the association between initiation of aspirin and survival following colorectal cancer (CRC) diagnosis. The value of this exposure is zero at baseline and may change its value to one at some time point. Estimating this association is complicated by having only intermittent measurements on aspirin-taking. Commonly used methods can lead to substantial bias. We present a class of calibration models for the distribution of the time of status change of the binary covariate. Estimates obtained from these models are then incorporated into the proportional hazard partial likelihood in a natural way. We develop non-parametric, semiparametric, and parametric calibration models, and derive asymptotic theory for the methods that we implement in the aspirin and CRC study. We further develop a risk-set calibration approach that is more useful in settings in which the association between the binary covariate and survival is strong.

摘要

在临床和队列研究中,目标通常包括评估时间相关的二分类治疗或暴露与生存结果之间的关联。最近,几项有影响力的研究针对阿司匹林的起始使用与结直肠癌(CRC)诊断后的生存之间的关联。这种暴露在基线时的价值为零,并且可能在某个时间点变为一。由于只能对服用阿司匹林进行间歇性测量,因此估计这种关联很复杂。常用的方法可能会导致严重的偏差。我们提出了一类用于二分类协变量状态变化时间分布的校准模型。然后,从这些模型中获得的估计值将以自然的方式纳入比例风险部分似然中。我们开发了非参数、半参数和参数校准模型,并为我们在阿司匹林和 CRC 研究中实施的方法推导了渐近理论。我们进一步开发了一种风险集校准方法,在二分类协变量与生存之间的关联较强的情况下,该方法更有用。

相似文献

1
A novel calibration framework for survival analysis when a binary covariate is measured at sparse time points.
Biostatistics. 2020 Apr 1;21(2):e148-e163. doi: 10.1093/biostatistics/kxy063.
2
Analysis of case-cohort designs with binary outcomes: Improving efficiency using whole-cohort auxiliary information.
Stat Methods Med Res. 2017 Apr;26(2):691-706. doi: 10.1177/0962280214556175. Epub 2014 Oct 26.
3
Aspirin As Secondary Prevention in Patients With Colorectal Cancer: An Unselected Population-Based Study.
J Clin Oncol. 2016 Jul 20;34(21):2501-8. doi: 10.1200/JCO.2015.65.3519. Epub 2016 May 31.
4
5
Analysis of survival data with missing measurements of a time-dependent binary covariate.
J Biopharm Stat. 2003 May;13(2):253-70. doi: 10.1081/BIP-120019270.
7
Doubly robust estimation of attributable fractions in survival analysis.
Stat Methods Med Res. 2017 Apr;26(2):948-969. doi: 10.1177/0962280214564003. Epub 2014 Dec 16.
8
Second-order estimating equations for the analysis of clustered current status data.
Biostatistics. 2009 Oct;10(4):756-72. doi: 10.1093/biostatistics/kxp029. Epub 2009 Jul 27.
10
Z-estimation and stratified samples: application to survival models.
Lifetime Data Anal. 2015 Oct;21(4):493-516. doi: 10.1007/s10985-014-9317-5. Epub 2015 Jan 15.

引用本文的文献

1
Making Sense of Censored Covariates: Statistical Methods for Studies of Huntington's Disease.
Annu Rev Stat Appl. 2024 Apr;11:255-277. doi: 10.1146/annurev-statistics-040522-095944. Epub 2023 Sep 8.
2
Modeling semi-competing risks data as a longitudinal bivariate process.
Biometrics. 2022 Sep;78(3):922-936. doi: 10.1111/biom.13480. Epub 2021 May 18.

本文引用的文献

1
End-of-life prescribing of aspirin in patients with breast or colorectal cancer.
BMJ Support Palliat Care. 2019 Mar;9(1):e6. doi: 10.1136/bmjspcare-2017-001370. Epub 2017 Aug 24.
2
Aspirin Use and Colorectal Cancer Survival According to Tumor CD274 (Programmed Cell Death 1 Ligand 1) Expression Status.
J Clin Oncol. 2017 Jun 1;35(16):1836-1844. doi: 10.1200/JCO.2016.70.7547. Epub 2017 Apr 13.
3
Analysis of the Proportional Hazards Model with Sparse Longitudinal Covariates.
J Am Stat Assoc. 2015;110(511):1187-1196. doi: 10.1080/01621459.2014.957289. Epub 2015 Nov 7.
4
A flexible, computationally efficient method for fitting the proportional hazards model to interval-censored data.
Biometrics. 2016 Mar;72(1):222-31. doi: 10.1111/biom.12389. Epub 2015 Sep 22.
5
De Novo Post-Diagnosis Aspirin Use and Mortality in Women with Stage I-III Breast Cancer.
Cancer Epidemiol Biomarkers Prev. 2015 Jun;24(6):898-904. doi: 10.1158/1055-9965.EPI-14-1415. Epub 2015 Mar 19.
6
Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival.
N Engl J Med. 2012 Oct 25;367(17):1596-606. doi: 10.1056/NEJMoa1207756.
7
Generating survival times to simulate Cox proportional hazards models with time-varying covariates.
Stat Med. 2012 Dec 20;31(29):3946-58. doi: 10.1002/sim.5452. Epub 2012 Jul 4.
8
Use of aspirin postdiagnosis improves survival for colon cancer patients.
Br J Cancer. 2012 Apr 24;106(9):1564-70. doi: 10.1038/bjc.2012.101. Epub 2012 Mar 27.
9
Survival analysis with error-prone time-varying covariates: a risk set calibration approach.
Biometrics. 2011 Mar;67(1):50-8. doi: 10.1111/j.1541-0420.2010.01423.x.
10
Aspirin use and survival after diagnosis of colorectal cancer.
JAMA. 2009 Aug 12;302(6):649-58. doi: 10.1001/jama.2009.1112.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验