Suppr超能文献

人工智能辅助预测儿童癌症幸存者的迟发性心肌病。

Artificial Intelligence-Assisted Prediction of Late-Onset Cardiomyopathy Among Childhood Cancer Survivors.

机构信息

Center for Biomedical Informatics, University of Tennessee Health Science Center, Memphis, TN.

Department of Health Informatics and Data Science, Loyola University Chicago, Maywood, IL.

出版信息

JCO Clin Cancer Inform. 2021 Apr;5:459-468. doi: 10.1200/CCI.20.00176.

Abstract

PURPOSE

Early identification of childhood cancer survivors at high risk for treatment-related cardiomyopathy may improve outcomes by enabling intervention before development of heart failure. We implemented artificial intelligence (AI) methods using the Children's Oncology Group guideline-recommended baseline ECG to predict cardiomyopathy.

MATERIAL AND METHODS

Seven AI and signal processing methods were applied to 10-second 12-lead ECGs obtained on 1,217 adult survivors of childhood cancer prospectively followed in the St Jude Lifetime Cohort (SJLIFE) study. Clinical and echocardiographic assessment of cardiac function was performed at initial and follow-up SJLIFE visits. Cardiomyopathy was defined as an ejection fraction < 50% or an absolute drop from baseline ≥ 10%. Genetic algorithm was used for feature selection, and extreme gradient boosting was applied to predict cardiomyopathy during the follow-up period. Model performance was evaluated by five-fold stratified cross-validation.

RESULTS

The median age at baseline SJLIFE evaluation was 31.7 years (range 18.4-66.4), and the time between baseline and follow-up evaluations was 5.2 years (0.5-9.5). Two thirds (67.1%) of patients were exposed to chest radiation, and 76.6% to anthracycline chemotherapy. One hundred seventeen (9.6%) patients developed cardiomyopathy during follow-up. In the model based solely on ECG features, the cross-validation area under the curve (AUC) was 0.87 (95% CI, 0.83 to 0.90), whereas the model based on clinical features had an AUC of 0.69 (95% CI, 0.64 to 0.74). In the model based on ECG and clinical features, the cross-validation AUC was 0.89 (95% CI, 0.86 to 0.91), with a sensitivity of 78% and a specificity of 81%.

CONCLUSION

AI using ECG data may assist in the identification of childhood cancer survivors at increased risk for developing future cardiomyopathy.

摘要

目的

通过在心力衰竭发生前进行干预,早期识别有治疗相关性心肌病风险的儿童癌症幸存者,可能改善其预后。我们采用人工智能(AI)方法,利用儿童肿瘤学组推荐的基线心电图(ECG)来预测心肌病。

材料与方法

将七种 AI 和信号处理方法应用于儿童癌症成年幸存者前瞻性随访的 1217 例 10 秒 12 导联心电图(ECG)中,这些患者来自圣裘德终身队列(SJLIFE)研究。在初始和随访 SJLIFE 就诊时,进行临床和超声心动图评估心功能。心肌病定义为射血分数<50%或与基线相比绝对下降≥10%。采用遗传算法进行特征选择,极端梯度提升用于预测随访期间的心肌病。通过五重分层交叉验证评估模型性能。

结果

SJLIFE 基线评估时的中位年龄为 31.7 岁(范围 18.4-66.4),基线和随访评估之间的时间为 5.2 年(0.5-9.5)。三分之二(67.1%)的患者接受过胸部放疗,76.6%的患者接受过蒽环类药物化疗。117 例(9.6%)患者在随访期间发生心肌病。在仅基于心电图特征的模型中,交叉验证曲线下面积(AUC)为 0.87(95%置信区间,0.83 至 0.90),而基于临床特征的模型 AUC 为 0.69(95%置信区间,0.64 至 0.74)。在基于心电图和临床特征的模型中,交叉验证 AUC 为 0.89(95%置信区间,0.86 至 0.91),敏感性为 78%,特异性为 81%。

结论

基于心电图数据的 AI 可能有助于识别有发生未来心肌病风险的儿童癌症幸存者。

相似文献

6
Pregnancy-associated cardiomyopathy in survivors of childhood cancer.儿童癌症幸存者中的妊娠相关心肌病
J Cancer Surviv. 2016 Feb;10(1):113-21. doi: 10.1007/s11764-015-0457-8. Epub 2015 Jun 5.

引用本文的文献

7
8
Trends in cardiology and oncology artificial intelligence publications.心脏病学与肿瘤学人工智能出版物的趋势。
Am Heart J Plus. 2022 Jun 30;17:100162. doi: 10.1016/j.ahjo.2022.100162. eCollection 2022 May.

本文引用的文献

8
Cardiac sympathetic denervation predicts PD in at-risk individuals.心脏去交感神经支配可预测高危个体的 PD。
Parkinsonism Relat Disord. 2018 Jul;52:90-93. doi: 10.1016/j.parkreldis.2017.10.003. Epub 2017 Oct 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验