Deparment of Health Informatics and Data Science, Parkinson School of Health Informatics and Public Health, Loyola University Chicago, Maywood, IL, USA.
Loyola University Chicago, 2160 S First Avenue, CTRE, Bldg. 115, Room 127, Maywood, IL, 60153, USA.
Sci Rep. 2020 Jul 9;10(1):11319. doi: 10.1038/s41598-020-68241-6.
Autonomic nervous system involvement precedes the motor features of Parkinson's disease (PD). Our goal was to develop a proof-of-concept model for identifying subjects at high risk of developing PD by analysis of cardiac electrical activity. We used standard 10-s electrocardiogram (ECG) recordings of 60 subjects from the Honolulu Asia Aging Study including 10 with prevalent PD, 25 with prodromal PD, and 25 controls who never developed PD. Various methods were implemented to extract features from ECGs including simple heart rate variability (HRV) metrics, commonly used signal processing methods, and a Probabilistic Symbolic Pattern Recognition (PSPR) method. Extracted features were analyzed via stepwise logistic regression to distinguish between prodromal cases and controls. Stepwise logistic regression selected four features from PSPR as predictors of PD. The final regression model built on the entire dataset provided an area under receiver operating characteristics curve (AUC) with 95% confidence interval of 0.90 [0.80, 0.99]. The five-fold cross-validation process produced an average AUC of 0.835 [0.831, 0.839]. We conclude that cardiac electrical activity provides important information about the likelihood of future PD not captured by classical HRV metrics. Machine learning applied to ECGs may help identify subjects at high risk of having prodromal PD.
自主神经系统的参与先于帕金森病 (PD) 的运动特征。我们的目标是通过分析心脏电活动来开发一种概念验证模型,以识别有发展为 PD 风险的高风险患者。我们使用来自檀香山亚洲老龄化研究的 60 名受试者的标准 10 秒心电图 (ECG) 记录,其中包括 10 名现患 PD 患者、25 名前驱 PD 患者和 25 名从未患 PD 的对照组。实施了各种方法从 ECG 中提取特征,包括简单的心率变异性 (HRV) 指标、常用的信号处理方法和概率符号模式识别 (PSPR) 方法。提取的特征通过逐步逻辑回归进行分析,以区分前驱病例和对照组。逐步逻辑回归从 PSPR 中选择四个特征作为 PD 的预测因子。基于整个数据集构建的最终回归模型提供了 95%置信区间为 0.90 [0.80, 0.99] 的接收器工作特征曲线 (ROC) 下面积。五折交叉验证过程产生的平均 AUC 为 0.835 [0.831, 0.839]。我们得出的结论是,心脏电活动提供了有关未来 PD 可能性的重要信息,而经典 HRV 指标无法捕捉到这些信息。应用于 ECG 的机器学习可能有助于识别有前驱 PD 高风险的受试者。