Suppr超能文献

用于神经记录应用的可重构、非线性、低功耗、基于 VCO 的 ADC。

A Reconfigurable, Nonlinear, Low-Power, VCO-Based ADC for Neural Recording Applications.

机构信息

Biomedical Integrated Systems Lab, University of Tehran, Tehran 1439957131, Iran.

Dipartimento di Ingegneria Navale, Elettrica, Elettronica e delle Telecomunicazioni (DITEN), University of Genoa, 16145 Genoa, Italy.

出版信息

Sensors (Basel). 2024 Sep 24;24(19):6161. doi: 10.3390/s24196161.

Abstract

Neural recording systems play a crucial role in comprehending the intricacies of the brain and advancing treatments for neurological disorders. Within these systems, the analog-to-digital converter (ADC) serves as a fundamental component, converting the electrical signals from the brain into digital data that can be further processed and analyzed by computing units. This research introduces a novel nonlinear ADC designed specifically for spike sorting in biomedical applications. Employing MOSFET varactors and voltage-controlled oscillators (VCOs), this ADC exploits the nonlinear capacitance properties of MOSFET varactors, achieving a parabolic quantization function that digitizes the noise with low resolution and the spikes with high resolution, effectively suppressing the background noise present in biomedical signals. This research aims to develop a reconfigurable, nonlinear voltage-controlled oscillator (VCO)-based ADC, specifically designed for implantable neural recording systems used in neuroprosthetics and brain-machine interfaces. The proposed design enhances the signal-to-noise ratio and reduces power consumption, making it more efficient for real-time neural data processing. By improving the performance and energy efficiency of these devices, the research contributes to the development of more reliable medical technologies for monitoring and treating neurological disorders. The quantization step of the ADC spans from 44.8 mV in the low-amplitude range to 1.4 mV in the high-amplitude range. The circuit was designed and simulated utilizing a 180 nm CMOS process; however, no physical prototype has been fabricated at this stage. Post-layout simulations confirm the expected performance. Occupying a silicon area is 0.09 mm. Operating at a sampling frequency of 16 kS/s and a supply voltage of 1 volt, this ADC consumes 62.4 µW.

摘要

神经记录系统在理解大脑的复杂性和推进神经疾病治疗方面发挥着关键作用。在这些系统中,模数转换器 (ADC) 作为一个基本组成部分,将大脑的电信号转换为数字数据,这些数据可以由计算单元进一步处理和分析。本研究介绍了一种专门为生物医学应用中的尖峰排序设计的新型非线性 ADC。该 ADC 采用 MOSFET 变容二极管和压控振荡器 (VCO),利用 MOSFET 变容二极管的非线性电容特性,实现了抛物线量化函数,该函数以低分辨率对噪声进行数字化,并以高分辨率对尖峰进行数字化,有效地抑制了生物医学信号中的背景噪声。本研究旨在开发一种可重构的、基于非线性电压控制振荡器 (VCO) 的 ADC,专门用于神经假体和脑机接口等植入式神经记录系统。所提出的设计提高了信号噪声比并降低了功耗,使其更适用于实时神经数据处理。通过提高这些设备的性能和能效,研究为监测和治疗神经疾病的更可靠的医疗技术的发展做出了贡献。ADC 的量化步长在低幅度范围为 44.8 mV,在高幅度范围为 1.4 mV。该电路采用 180nm CMOS 工艺进行设计和模拟;然而,在现阶段还没有制作物理原型。布局后仿真证实了预期的性能。占用的硅面积为 0.09 毫米。该 ADC 在 16 kS/s 的采样频率和 1 伏的供电电压下工作,消耗 62.4 µW 的功率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b330/11479173/dd296fcc478b/sensors-24-06161-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验