Suppr超能文献

使用 SARS-CoV-19 担忧 (CoV-Wo) 量表评估美国居民担忧的决定因素。

Determinants of worry using the SARS-CoV-19 worry (CoV-Wo) scale among United States residents.

机构信息

Department of Health, Behavior and Society, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.

Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

出版信息

J Community Psychol. 2021 Jul;49(5):1487-1504. doi: 10.1002/jcop.22577. Epub 2021 Apr 29.

Abstract

We sought to develop a brief Severe Acute Respiratory Syndrome Coronavirus 2-related worry (CoV-Wo) scale to understand COVID-19-related worry among adults in the United States. We also aimed to model key determinants of worry in the early stage of the COVID-19 pandemic in the United States. A total of 806 participants completed an online survey in late March 2020. Exploratory and confirmatory factor analyses assessed scale structure. Factor analysis stratified by depression was used to assess measurement invariance. Linear regression models examined COVID-19-related worry determinants. The CoV-Wo scale exhibited good reliability (α = 0.80) and a two-factor structure: health (α = 0.83) and resources (α = 0.71). The full scale and both subscales were higher among participants who stopped working due to COVID-19 and those with depression. Perception of quality medical care if infected with COVID-19 was associated with reduced worry. The CoV-Wo scale is a low burden assessment of COVID-19-related worry, that captures common worries in domains affected by COVID-19 and can be used to develop psychosocial resources.

摘要

我们试图开发一个简短的严重急性呼吸系统综合征冠状病毒 2 相关担忧(CoV-Wo)量表,以了解美国成年人中与 COVID-19 相关的担忧。我们还旨在模拟美国 COVID-19 大流行早期担忧的关键决定因素。共有 806 名参与者在 2020 年 3 月下旬完成了在线调查。探索性和验证性因子分析评估了量表结构。按抑郁分层的因子分析用于评估测量不变性。线性回归模型检验了与 COVID-19 相关的担忧决定因素。CoV-Wo 量表表现出良好的可靠性(α=0.80)和双因素结构:健康(α=0.83)和资源(α=0.71)。由于 COVID-19 而停止工作的参与者以及患有抑郁症的参与者的 CoV-Wo 量表总分和两个分量表得分均较高。如果感染 COVID-19,对高质量医疗的看法与担忧减少有关。CoV-Wo 量表是一种对 COVID-19 相关担忧的低负担评估方法,它可以捕捉到受 COVID-19 影响的领域的常见担忧,并可用于开发社会心理资源。

相似文献

引用本文的文献

5
Cognitive schemas and fertility motivations in the U.S. during the COVID-19 pandemic.新冠疫情期间美国的认知图式与生育动机
Vienna Yearb Popul Res. 2022;20:261-284. doi: 10.1553/populationyearbook2022.res1.7. Epub 2022 Apr 12.

本文引用的文献

2
Development and initial validation of the COVID Stress Scales.《COVID 应激量表的编制与初步验证》
J Anxiety Disord. 2020 May;72:102232. doi: 10.1016/j.janxdis.2020.102232. Epub 2020 May 4.
5
Clinical Characteristics of Coronavirus Disease 2019 in China.《中国 2019 年冠状病毒病临床特征》
N Engl J Med. 2020 Apr 30;382(18):1708-1720. doi: 10.1056/NEJMoa2002032. Epub 2020 Feb 28.
7
Presumed Asymptomatic Carrier Transmission of COVID-19.新冠病毒无症状感染者的传播。
JAMA. 2020 Apr 14;323(14):1406-1407. doi: 10.1001/jama.2020.2565.
8
COVID-19: what is next for public health?新冠疫情:公共卫生的下一步走向何方?
Lancet. 2020 Feb 22;395(10224):542-545. doi: 10.1016/S0140-6736(20)30374-3. Epub 2020 Feb 13.
10
Integrating Mental and Physical Health Services Using a Socio-Emotional Trauma Lens.运用社会情感创伤视角整合心理健康与身体健康服务。
Curr Probl Pediatr Adolesc Health Care. 2016 Dec;46(12):391-401. doi: 10.1016/j.cppeds.2016.11.004. Epub 2016 Dec 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验