Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain.
Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain; miCure Therapeutics LTD., Tel-Aviv, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
Pharmacol Ther. 2021 Nov;227:107873. doi: 10.1016/j.pharmthera.2021.107873. Epub 2021 Apr 27.
Remarkable advances in understanding the role of RNA in health and disease have expanded considerably in the last decade. RNA is becoming an increasingly important target for therapeutic intervention; therefore, it is critical to develop strategies for therapeutic modulation of RNA function. Oligonucleotides, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA mimic (miRNA), and anti-microRNA (antagomir) are perhaps the most direct therapeutic strategies for addressing RNA. Among other mechanisms, most oligonucleotide designs involve the formation of a hybrid with RNA that promotes its degradation by activation of endogenous enzymes such as RNase-H (e.g., ASO) or the RISC complex (e.g. RNA interference - RNAi for siRNA and miRNA). However, the use of oligonucleotides for the treatment of brain disorders is seriously compromised by two main limitations: i) how to deliver oligonucleotides to the brain compartment, avoiding the action of peripheral RNAses? and once there, ii) how to target specific neuronal populations? We review the main molecular pathways in major depressive disorder (MDD) and Parkinson's disease (PD), and discuss the challenges associated with the development of novel oligonucleotide therapeutics. We pay special attention to the use of conjugated ligand-oligonucleotide approach in which the oligonucleotide sequence is covalently bound to monoamine transporter inhibitors (e.g. sertraline, reboxetine, indatraline). This strategy allows their selective accumulation in the monoamine neurons of mice and monkeys after their intranasal or intracerebroventricular administration, evoking preclinical changes predictive of a clinical therapeutic action after knocking-down disease-related genes. In addition, recent advances in oligonucleotide therapeutic clinical trials are also reviewed.
在过去的十年中,人们对 RNA 在健康和疾病中的作用的理解取得了显著进展。RNA 正成为治疗干预的一个日益重要的靶点;因此,开发针对 RNA 功能的治疗性调节策略至关重要。寡核苷酸,包括反义寡核苷酸(ASO)、小干扰 RNA(siRNA)、微 RNA 模拟物(miRNA)和抗微 RNA(antagomir),可能是针对 RNA 的最直接的治疗策略。除其他机制外,大多数寡核苷酸设计都涉及与 RNA 形成杂交体,通过激活内源性酶(如 RNase-H[例如 ASO]或 RISC 复合物[例如 siRNA 和 miRNA 的 RNA 干扰-RNAi)来促进其降解。然而,寡核苷酸在治疗脑部疾病方面的应用受到两个主要限制:i)如何将寡核苷酸递送到脑区,避免外周 RNase 的作用?ii)一旦到达那里,如何靶向特定的神经元群体?我们综述了主要的分子途径在重度抑郁症(MDD)和帕金森病(PD)中,并讨论了开发新型寡核苷酸治疗药物所面临的挑战。我们特别关注共轭配体-寡核苷酸方法的应用,其中寡核苷酸序列与单胺转运体抑制剂(如舍曲林、瑞波西汀、吲哚拉明)共价结合。这种策略允许它们在经鼻内或脑室内给予后在小鼠和猴子的单胺神经元中选择性积累,引发对敲低疾病相关基因后的临床治疗作用具有预测性的临床前变化。此外,还综述了寡核苷酸治疗临床试验的最新进展。