Suppr超能文献

基于联合图谱和卷积神经网络的 ADNI 标准化协议 MRI 海马体分割。

Combined Atlas and Convolutional Neural Network-Based Segmentation of the Hippocampus from MRI According to the ADNI Harmonized Protocol.

机构信息

Medical Sciences Graduate Program, University of Calgary, Calgary, AB T2N 1N4, Canada.

Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 1N4, Canada.

出版信息

Sensors (Basel). 2021 Apr 1;21(7):2427. doi: 10.3390/s21072427.

Abstract

Hippocampus atrophy is an early structural feature that can be measured from magnetic resonance imaging (MRI) to improve the diagnosis of neurological diseases. An accurate and robust standardized hippocampus segmentation method is required for reliable atrophy assessment. The aim of this work was to develop and evaluate an automatic segmentation tool (DeepHarp) for hippocampus delineation according to the ADNI harmonized hippocampal protocol (HarP). DeepHarp utilizes a two-step process. First, the approximate location of the hippocampus is identified in T1-weighted MRI datasets using an atlas-based approach, which is used to crop the images to a region-of-interest (ROI) containing the hippocampus. In the second step, a convolutional neural network trained using datasets with corresponding manual hippocampus annotations is used to segment the hippocampus from the cropped ROI. The proposed method was developed and validated using 107 datasets with manually segmented hippocampi according to the ADNI-HarP standard as well as 114 multi-center datasets of patients with Alzheimer's disease, mild cognitive impairment, cerebrovascular disease, and healthy controls. Twenty-three independent datasets manually segmented according to the ADNI-HarP protocol were used for testing to assess the accuracy, while an independent test-retest dataset was used to assess precision. The proposed DeepHarp method achieved a mean Dice similarity score of 0.88, which was significantly better than four other established hippocampus segmentation methods used for comparison. At the same time, the proposed method also achieved a high test-retest precision (mean Dice score: 0.95). In conclusion, DeepHarp can automatically segment the hippocampus from T1-weighted MRI datasets according to the ADNI-HarP protocol with high accuracy and robustness, which can aid atrophy measurements in a variety of pathologies.

摘要

海马体萎缩是一种早期的结构特征,可以通过磁共振成像(MRI)进行测量,以提高神经疾病的诊断水平。为了可靠地评估萎缩程度,需要一种准确且稳健的标准化海马体分割方法。本研究旨在开发和评估一种基于 ADNI 标准化海马体协议(HarP)的自动分割工具(DeepHarp),用于海马体勾画。DeepHarp 采用两步法。首先,使用基于图谱的方法在 T1 加权 MRI 数据集中确定海马体的大致位置,然后使用该位置裁剪图像以得到包含海马体的感兴趣区域(ROI)。在第二步中,使用经过带有对应手动海马体注释的数据集训练的卷积神经网络从裁剪的 ROI 中分割出海马体。该方法是使用 107 个根据 ADNI-HarP 标准手动分割的海马体数据集以及 114 个包含阿尔茨海默病、轻度认知障碍、脑血管病和健康对照患者的多中心数据集进行开发和验证的。23 个根据 ADNI-HarP 协议手动分割的独立数据集用于评估准确性,而一个独立的测试-重测数据集则用于评估精度。所提出的 DeepHarp 方法的平均 Dice 相似性得分达到 0.88,明显优于用于比较的其他四种已建立的海马体分割方法。同时,该方法还具有较高的测试-重测精度(平均 Dice 得分:0.95)。综上所述,DeepHarp 可以根据 ADNI-HarP 协议自动从 T1 加权 MRI 数据集中分割出海马体,具有较高的准确性和稳健性,有助于在多种病变中进行萎缩测量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9787/8036492/940a4977487f/sensors-21-02427-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验