基于形态学视觉转换器学习的海马亚结构分割。

Hippocampus substructure segmentation using morphological vision transformer learning.

机构信息

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America.

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States of America.

出版信息

Phys Med Biol. 2023 Dec 1;68(23):235013. doi: 10.1088/1361-6560/ad0d45.

Abstract

The hippocampus plays a crucial role in memory and cognition. Because of the associated toxicity from whole brain radiotherapy, more advanced treatment planning techniques prioritize hippocampal avoidance, which depends on an accurate segmentation of the small and complexly shaped hippocampus. To achieve accurate segmentation of the anterior and posterior regions of the hippocampus from T1 weighted (T1w) MR images, we developed a novel model, Hippo-Net, which uses a cascaded model strategy. The proposed model consists of two major parts: (1) a localization model is used to detect the volume-of-interest (VOI) of hippocampus. (2) An end-to-end morphological vision transformer network (Franchi2020.107246, Ranem2022 IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW) pp 3710-3719) is used to perform substructures segmentation within the hippocampus VOI. The substructures include the anterior and posterior regions of the hippocampus, which are defined as the hippocampus proper and parts of the subiculum. The vision transformer incorporates the dominant features extracted from MR images, which are further improved by learning-based morphological operators. The integration of these morphological operators into the vision transformer increases the accuracy and ability to separate hippocampus structure into its two distinct substructures. A total of 260 T1w MRI datasets from medical segmentation decathlon dataset were used in this study. We conducted a five-fold cross-validation on the first 200 T1w MR images and then performed a hold-out test on the remaining 60 T1w MR images with the model trained on the first 200 images. In five-fold cross-validation, the Dice similarity coefficients were 0.900 ± 0.029 and 0.886 ± 0.031 for the hippocampus proper and parts of the subiculum, respectively. The mean surface distances (MSDs) were 0.426 ± 0.115 mm and 0.401 ± 0.100 mm for the hippocampus proper and parts of the subiculum, respectively. The proposed method showed great promise in automatically delineating hippocampus substructures on T1w MR images. It may facilitate the current clinical workflow and reduce the physicians' effort.

摘要

海马体在记忆和认知中起着至关重要的作用。由于全脑放射治疗的相关毒性,更先进的治疗计划技术优先考虑海马体回避,这依赖于对小而复杂形状的海马体进行准确的分割。为了从 T1 加权(T1w)磁共振图像中准确分割海马体的前、后区域,我们开发了一种新的模型 Hippo-Net,该模型使用级联模型策略。所提出的模型由两大部分组成:(1)定位模型用于检测海马体的感兴趣区(VOI)。(2)一个端到端的形态学视觉转换器网络(Franchi2020.107246,Ranem2022 IEEE/CVF 计算机视觉与模式识别研讨会(CVPRW)pp 3710-3719)用于在海马体 VOI 内进行亚结构分割。亚结构包括海马体的前、后区域,它们被定义为海马体本身和部分下托。视觉转换器包含从磁共振图像中提取的主导特征,这些特征通过基于学习的形态学算子进一步改进。将这些形态学算子集成到视觉转换器中,可以提高准确性,并将海马体结构分离为两个不同的亚结构。本研究共使用了来自医学分割十项全能数据集的 260 个 T1wMRI 数据集。我们在前 200 个 T1wMR 图像上进行了五折交叉验证,然后在前 200 个图像上训练模型后,在后 60 个 T1wMR 图像上进行了留一测试。在五折交叉验证中,对于海马体本身和下托部分,Dice 相似系数分别为 0.900 ± 0.029 和 0.886 ± 0.031。平均表面距离(MSD)分别为 0.426 ± 0.115mm 和 0.401 ± 0.100mm,对于海马体本身和下托部分。该方法在自动勾画 T1wMR 图像上的海马体亚结构方面显示出巨大的潜力。它可能会简化当前的临床工作流程并减少医生的工作量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3ec/10690959/f6144842ab85/pmbad0d45f1_lr.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索