Bevilacqua Alessandro, Mottola Margherita, Ferroni Fabio, Rossi Alice, Gavelli Giampaolo, Barone Domenico
Department of Computer Science and Engineering (DISI), University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy.
Advanced Research Center on Electronic Systems (ARCES), University of Bologna, Via Toffano 2/2, I-40125 Bologna, Italy.
Diagnostics (Basel). 2021 Apr 21;11(5):739. doi: 10.3390/diagnostics11050739.
Predicting clinically significant prostate cancer (csPCa) is crucial in PCa management. 3T-magnetic resonance (MR) systems may have a novel role in quantitative imaging and early csPCa prediction, accordingly. In this study, we develop a radiomic model for predicting csPCa based solely on native b2000 diffusion weighted imaging (DWI) and debate the effectiveness of apparent diffusion coefficient (ADC) in the same task. In total, 105 patients were retrospectively enrolled between January-November 2020, with confirmed csPCa or ncsPCa based on biopsy. DWI and ADC images acquired with a 3T-MRI were analyzed by computing 84 local first-order radiomic features (RFs). Two predictive models were built based on DWI and ADC, separately. Relevant RFs were selected through LASSO, a support vector machine (SVM) classifier was trained using repeated 3-fold cross validation (CV) and validated on a holdout set. The SVM models rely on a single couple of uncorrelated RFs (ρ < 0.15) selected through Wilcoxon rank-sum test ( ≤ 0.05) with Holm-Bonferroni correction. On the holdout set, while the ADC model yielded AUC = 0.76 (95% CI, 0.63-0.96), the DWI model reached AUC = 0.84 (95% CI, 0.63-0.90), with specificity = 75%, sensitivity = 90%, and informedness = 0.65. This study establishes the primary role of 3T-DWI in PCa quantitative analyses, whilst ADC can remain the leading sequence for detection.
预测具有临床意义的前列腺癌(csPCa)在前列腺癌管理中至关重要。因此,3T磁共振(MR)系统在定量成像和早期csPCa预测方面可能具有新的作用。在本研究中,我们开发了一种仅基于原始b2000扩散加权成像(DWI)预测csPCa的放射组学模型,并探讨了表观扩散系数(ADC)在同一任务中的有效性。2020年1月至11月期间,我们回顾性纳入了105例患者,这些患者经活检确诊为csPCa或非csPCa。通过计算84个局部一阶放射组学特征(RFs),对用3T-MRI获取的DWI和ADC图像进行分析。分别基于DWI和ADC建立了两个预测模型。通过LASSO选择相关RFs,使用重复3折交叉验证(CV)训练支持向量机(SVM)分类器,并在保留集上进行验证。SVM模型依赖于通过Wilcoxon秩和检验(≤0.05)并经Holm-Bonferroni校正选择的一对不相关RFs(ρ<0.15)。在保留集上,ADC模型的AUC=0.76(95%CI,0.63-0.96),而DWI模型的AUC=0.84(95%CI,0.63-0.90),特异性=75%,敏感性=90%,信息性=0.65。本研究确立了3T-DWI在前列腺癌定量分析中的主要作用,而ADC仍可作为检测的主要序列。