Gaudiano Caterina, Mottola Margherita, Bianchi Lorenzo, Corcioni Beniamino, Braccischi Lorenzo, Tomassoni Makoto Taninokuchi, Cattabriga Arrigo, Cocozza Maria Adriana, Giunchi Francesca, Schiavina Riccardo, Fanti Stefano, Fiorentino Michelangelo, Brunocilla Eugenio, Mosconi Cristina, Bevilacqua Alessandro
Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy.
Cancers (Basel). 2023 Jun 30;15(13):3438. doi: 10.3390/cancers15133438.
The Prostate Imaging and Reporting Data System (PI-RADS) has a key role in the management of prostate cancer (PCa). However, the clinical interpretation of PI-RADS 3 score lesions may be challenging and misleading, thus postponing PCa diagnosis to biopsy outcome. Multiparametric magnetic resonance imaging (mpMRI) radiomic analysis may represent a stand-alone noninvasive tool for PCa diagnosis. Hence, this study aims at developing a mpMRI-based radiomic PCa diagnostic model in a cohort of PI-RADS 3 lesions. We enrolled 133 patients with 155 PI-RADS 3 lesions, 84 of which had PCa confirmation by fusion biopsy. Local radiomic features were generated from apparent diffusion coefficient maps, and the four most informative were selected using LASSO, the Wilcoxon rank-sum test ( < 0.001), and support vector machines (SVMs). The selected features where augmented and used to train an SVM classifier, externally validated on a holdout subset. Linear and second-order polynomial kernels were exploited, and their predictive performance compared through receiver operating characteristics (ROC)-related metrics. On the test set, the highest performance, equally for both kernels, was specificity = 76%, sensitivity = 78%, positive predictive value = 80%, and negative predictive value = 74%. Our findings substantially improve radiologist interpretation of PI-RADS 3 lesions and let us advance towards an image-driven PCa diagnosis.
前列腺影像报告和数据系统(PI-RADS)在前列腺癌(PCa)的管理中起着关键作用。然而,对PI-RADS 3分病变的临床解读可能具有挑战性且容易产生误导,从而将PCa诊断推迟到活检结果出来。多参数磁共振成像(mpMRI)的放射组学分析可能代表一种独立的非侵入性PCa诊断工具。因此,本研究旨在针对一组PI-RADS 3病变开发基于mpMRI的放射组学PCa诊断模型。我们纳入了133例患有155个PI-RADS 3病变的患者,其中84例经融合活检确诊为PCa。从表观扩散系数图生成局部放射组学特征,并使用套索回归、威尔科克森秩和检验(<0.001)和支持向量机(SVM)选择四个信息量最大的特征。对所选特征进行扩充,并用于训练SVM分类器,在一个留出子集中进行外部验证。利用线性和二阶多项式核,并通过与受试者工作特征(ROC)相关的指标比较它们的预测性能。在测试集中,两种核的最高性能相同,特异性=76%,敏感性=78%,阳性预测值=80%,阴性预测值=74%。我们的研究结果显著改善了放射科医生对PI-RADS 3病变的解读,并使我们朝着图像驱动的PCa诊断迈进。