Suppr超能文献

奇数威布尔 - G 分布族的离散类似物:性质、经典估计和贝叶斯估计及其在计数数据中的应用

A discrete analogue of odd Weibull-G family of distributions: properties, classical and Bayesian estimation with applications to count data.

作者信息

El-Morshedy M, Eliwa M S, Tyagi Abhishek

机构信息

Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia.

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt.

出版信息

J Appl Stat. 2021 May 24;49(11):2928-2952. doi: 10.1080/02664763.2021.1928018. eCollection 2022.

Abstract

In the statistical literature, several discrete distributions have been developed so far. However, in this progressive technological era, the data generated from different fields is getting complicated day by day, making it difficult to analyze this real data through the various discrete distributions available in the existing literature. In this context, we have proposed a new flexible family of discrete models named discrete odd Weibull-G (DOW-G) family. Its several impressive distributional characteristics are derived. A key feature of the proposed family is its failure rate function that can take a variety of shapes for distinct values of the unknown parameters, like decreasing, increasing, constant, J-, and bathtub-shaped. Furthermore, the presented family not only adequately captures the skewed and symmetric data sets, but it can also provide a better fit to equi-, over-, under-dispersed data. After producing the general class, two particular distributions of the DOW-G family are extensively studied. The parameters estimation of the proposed family, are explored by the method of maximum likelihood and Bayesian approach. A compact Monte Carlo simulation study is performed to assess the behavior of the estimation methods. Finally, we have explained the usefulness of the proposed family by using two different real data sets.

摘要

在统计文献中,到目前为止已经开发了几种离散分布。然而,在这个技术不断进步的时代,不同领域产生的数据日益复杂,使得通过现有文献中可用的各种离散分布来分析这些实际数据变得困难。在此背景下,我们提出了一个新的灵活的离散模型族,称为离散奇数威布尔 - G(DOW - G)族。推导了它的几个令人印象深刻的分布特征。所提出的族的一个关键特征是其失效率函数,对于未知参数的不同值,它可以呈现多种形状,如递减、递增、恒定、J形和浴盆形。此外,所提出的族不仅能充分捕捉偏态和对称数据集,还能更好地拟合等分散、过度分散和欠分散的数据。在生成一般类之后,对DOW - G族的两个特定分布进行了广泛研究。通过最大似然法和贝叶斯方法探索了所提出族的参数估计。进行了一个紧凑的蒙特卡罗模拟研究来评估估计方法的性能。最后,我们通过使用两个不同的实际数据集解释了所提出族的实用性。

相似文献

1
A discrete analogue of odd Weibull-G family of distributions: properties, classical and Bayesian estimation with applications to count data.
J Appl Stat. 2021 May 24;49(11):2928-2952. doi: 10.1080/02664763.2021.1928018. eCollection 2022.
3
Exponentiated odd Chen-G family of distributions: statistical properties, Bayesian and non-Bayesian estimation with applications.
J Appl Stat. 2020 Jun 23;48(11):1948-1974. doi: 10.1080/02664763.2020.1783520. eCollection 2021.
4
Sine -power odd-G family of distributions with applications.
Sci Rep. 2024 Aug 22;14(1):19481. doi: 10.1038/s41598-024-69567-1.
5
A one-parameter discrete distribution for over-dispersed data: statistical and reliability properties with applications.
J Appl Stat. 2021 Mar 30;49(10):2467-2487. doi: 10.1080/02664763.2021.1905787. eCollection 2022.
6
A new extended rayleigh distribution with applications of COVID-19 data.
Results Phys. 2021 Apr;23:104012. doi: 10.1016/j.rinp.2021.104012. Epub 2021 Mar 12.
7
A new modification of the flexible Weibull distribution based on power transformation: Monte Carlo simulation and applications.
Heliyon. 2023 Jun 16;9(6):e17238. doi: 10.1016/j.heliyon.2023.e17238. eCollection 2023 Jun.
8
A family of Gamma-generated distributions: Statistical properties and applications.
Stat Methods Med Res. 2021 Aug;30(8):1850-1873. doi: 10.1177/09622802211009262. Epub 2021 May 18.
9
Classical and Bayesian estimation for type-I extended-F family with an actuarial application.
PLoS One. 2023 Feb 2;18(2):e0275430. doi: 10.1371/journal.pone.0275430. eCollection 2023.
10
The new discrete distribution with application to COVID-19 Data.
Results Phys. 2022 Jan;32:104987. doi: 10.1016/j.rinp.2021.104987. Epub 2021 Dec 5.

引用本文的文献

1
A new asymmetric extended family: Properties and estimation methods with actuarial applications.
PLoS One. 2022 Oct 6;17(10):e0275001. doi: 10.1371/journal.pone.0275001. eCollection 2022.

本文引用的文献

1
A one-parameter discrete distribution for over-dispersed data: statistical and reliability properties with applications.
J Appl Stat. 2021 Mar 30;49(10):2467-2487. doi: 10.1080/02664763.2021.1905787. eCollection 2022.
2
A new two-parameter exponentiated discrete Lindley distribution: properties, estimation and applications.
J Appl Stat. 2019 Jul 8;47(2):354-375. doi: 10.1080/02664763.2019.1638893. eCollection 2020.
3
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.
IEEE Trans Pattern Anal Mach Intell. 1984 Jun;6(6):721-41. doi: 10.1109/tpami.1984.4767596.
4
The beta modified Weibull distribution.
Lifetime Data Anal. 2010 Jul;16(3):409-30. doi: 10.1007/s10985-010-9161-1. Epub 2010 Mar 18.
5
Corticosteroid-induced kidney dysmorphogenesis is associated with deregulated expression of known cystogenic molecules, as well as Indian hedgehog.
Am J Physiol Renal Physiol. 2010 Feb;298(2):F346-56. doi: 10.1152/ajprenal.00574.2009. Epub 2009 Dec 9.
6
The Monte Carlo method.
J Am Stat Assoc. 1949 Sep;44(247):335-41. doi: 10.1080/01621459.1949.10483310.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验