Arzi Roni Sverdlov, Kay Asaf, Raychman Yulia, Sosnik Alejandro
Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel.
Laboratory of Electrochemical Materials and Devices, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel.
Pharmaceutics. 2021 Apr 10;13(4):529. doi: 10.3390/pharmaceutics13040529.
Nanoprecipitation is one of the most versatile methods to produce pure drug nanoparticles (PDNPs) owing to the ability to optimize the properties of the product. Nevertheless, nanoprecipitation may result in broad particle size distribution, low physical stability, and batch-to-batch variability. Microfluidics has emerged as a powerful tool to produce PDNPs in a simple, reproducible, and cost-effective manner with excellent control over the nanoparticle size. In this work, we designed and fabricated T- and Y-shaped Si-made microfluidic devices and used them to produce PDNPs of three kinase inhibitors of different lipophilicity and water-solubility, namely imatinib, dasatinib and tofacitinib, without the use of colloidal stabilizers. PDNPs display hydrodynamic diameter in the 90-350 nm range as measured by dynamic light scattering and a rounded shape as visualized by high-resolution scanning electron microscopy. Powder X-ray diffraction and differential scanning calorimetry confirmed that this method results in highly amorphous nanoparticles. In addition, we show that the flow rate of solvent, the anti-solvent, and the channel geometry of the device play a key role governing the nanoparticle size.
由于能够优化产品特性,纳米沉淀法是生产纯药物纳米颗粒(PDNP)最通用的方法之一。然而,纳米沉淀法可能会导致粒径分布宽泛、物理稳定性低以及批次间差异。微流控技术已成为一种强大的工具,能够以简单、可重复且经济高效的方式生产PDNP,并对纳米颗粒大小进行出色控制。在这项工作中,我们设计并制造了T形和Y形硅基微流控装置,并用它们来生产三种不同亲脂性和水溶性的激酶抑制剂(即伊马替尼、达沙替尼和托法替布)的PDNP,且不使用胶体稳定剂。通过动态光散射测量,PDNP的流体动力学直径在90 - 350 nm范围内,通过高分辨率扫描电子显微镜观察呈现圆形。粉末X射线衍射和差示扫描量热法证实,该方法可产生高度无定形的纳米颗粒。此外,我们表明溶剂、反溶剂的流速以及装置的通道几何形状在控制纳米颗粒大小方面起着关键作用。