Suppr超能文献

β-2,6 型果聚糖的免疫调节特性:全面综述。

The Immunomodulatory Properties of β-2,6 Fructans: A Comprehensive Review.

机构信息

Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK.

Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland.

出版信息

Nutrients. 2021 Apr 15;13(4):1309. doi: 10.3390/nu13041309.

Abstract

Polysaccharides such as β-2,1-linked fructans including inulin or fructose oligosaccharides are well-known prebiotics with recognised immunomodulatory properties. In recent years, other fructan types covering β-2,6-linked fructans, particularly microbial levans, have gained increasing interest in the field. β-2,6-linked fructans of different degrees of polymerisation can be synthesised by plants or microbes including those that reside in the gastrointestinal tract. Accumulating evidence suggests a role for these β-2,6 fructans in modulating immune function. Here, we provide an overview of the sources and structures of β-2,6 fructans from plants and microbes and describe their ability to modulate immune function in vitro and in vivo along with the suggested mechanisms underpinning their immunomodulatory properties. Further, we discuss the limitations and perspectives pertinent to current studies and the potential applications of β-2,6 fructans including in gut health.

摘要

多糖,如包括菊粉或果寡糖在内的β-2,1 键合的果聚糖,是具有公认免疫调节特性的知名益生元。近年来,该领域对其他类型的果聚糖(包括β-2,6 键合果聚糖,特别是微生物莱鲍迪苷)的兴趣日益增加。不同聚合度的β-2,6 键合果聚糖可由植物或微生物合成,包括存在于胃肠道中的微生物。越来越多的证据表明,这些β-2,6 果糖在调节免疫功能方面发挥作用。在这里,我们概述了植物和微生物来源的β-2,6 果糖的来源和结构,并描述了它们在体外和体内调节免疫功能的能力,以及支持其免疫调节特性的潜在机制。此外,我们还讨论了当前研究的局限性和展望以及β-2,6 果糖(包括肠道健康)的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44ef/8071392/9af6772c8fc6/nutrients-13-01309-g001.jpg

相似文献

1
The Immunomodulatory Properties of β-2,6 Fructans: A Comprehensive Review.
Nutrients. 2021 Apr 15;13(4):1309. doi: 10.3390/nu13041309.
2
Fructose and Fructans: Opposite Effects on Health?
Plant Foods Hum Nutr. 2015 Sep;70(3):227-37. doi: 10.1007/s11130-015-0485-6.
3
Immunomodulatory effects of inulin-type fructans from Arctium lappa L. by targeting gut microbiota and their metabolites.
Food Chem. 2025 Mar 1;467:142308. doi: 10.1016/j.foodchem.2024.142308. Epub 2024 Dec 4.
4
A novel inulin-type fructan from Asparagus cochinchinensis and its beneficial impact on human intestinal microbiota.
Carbohydr Polym. 2020 Nov 1;247:116761. doi: 10.1016/j.carbpol.2020.116761. Epub 2020 Jul 13.
7
Effect of fructans, prebiotics and fibres on the human gut microbiome assessed by 16S rRNA-based approaches: a review.
Benef Microbes. 2020 Mar 27;11(2):101-129. doi: 10.3920/BM2019.0082. Epub 2020 Feb 19.
8
Lipopolysaccharide associated with β-2,6 fructan mediates TLR4-dependent immunomodulatory activity in vitro.
Carbohydr Polym. 2022 Feb 1;277:118606. doi: 10.1016/j.carbpol.2021.118606. Epub 2021 Aug 26.
10
Implication of fructans in health: immunomodulatory and antioxidant mechanisms.
ScientificWorldJournal. 2015;2015:289267. doi: 10.1155/2015/289267. Epub 2015 Mar 16.

引用本文的文献

1
Recent developments in the production of prebiotic fructooligosaccharides using fungal fructosyltransferases.
Mycology. 2024 Apr 2;15(4):564-584. doi: 10.1080/21501203.2024.2323713. eCollection 2024.
2
Advances in Microbial Exopolysaccharides: Present and Future Applications.
Biomolecules. 2024 Sep 16;14(9):1162. doi: 10.3390/biom14091162.
4
Exopolysaccharides Producing Bacteria: A Review.
Microorganisms. 2023 Jun 9;11(6):1541. doi: 10.3390/microorganisms11061541.
5
Levansucrase: Enzymatic Synthesis of Engineered Prebiotics.
Curr Pharm Biotechnol. 2023;24(2):199-202. doi: 10.2174/1389201023666220421134103.
6
Inulin-lipid hybrid (ILH) microparticles promote pH-triggered release of rifampicin within infected macrophages.
Drug Deliv Transl Res. 2023 Jun;13(6):1716-1729. doi: 10.1007/s13346-022-01287-3. Epub 2023 Jan 11.
7
Dietary Modulation of the Immune Function: Direct and Microbiota-Dependent Effect.
Nutrients. 2022 May 7;14(9):1957. doi: 10.3390/nu14091957.

本文引用的文献

2
Dietary fibre in gastrointestinal health and disease.
Nat Rev Gastroenterol Hepatol. 2021 Feb;18(2):101-116. doi: 10.1038/s41575-020-00375-4. Epub 2020 Nov 18.
3
Growth Inhibition of Common Enteric Pathogens in the Intestine of Broilers by Microbially Produced Dextran and Levan Exopolysaccharides.
Curr Microbiol. 2020 Sep;77(9):2128-2136. doi: 10.1007/s00284-020-02091-3. Epub 2020 Jul 13.
4
Enhanced production and immunomodulatory activity of levan from the acetic acid bacterium, Tanticharoenia sakaeratensis.
Int J Biol Macromol. 2020 Nov 15;163:574-581. doi: 10.1016/j.ijbiomac.2020.07.001. Epub 2020 Jul 4.
5
Production of fructooligosaccharides by Bacillus subtilis natto CCT7712 and their antiproliferative potential.
J Appl Microbiol. 2020 May;128(5):1414-1426. doi: 10.1111/jam.14569. Epub 2020 Jan 28.
6
Levan from Bacillus amyloliquefaciens JN4 acts as a prebiotic for enhancing the intestinal adhesion capacity of Lactobacillus reuteri JN101.
Int J Biol Macromol. 2020 Mar 1;146:482-487. doi: 10.1016/j.ijbiomac.2019.12.212. Epub 2019 Dec 26.
7
A fructan from Anemarrhena asphodeloides Bunge showing neuroprotective and immunoregulatory effects.
Carbohydr Polym. 2020 Feb 1;229:115477. doi: 10.1016/j.carbpol.2019.115477. Epub 2019 Oct 17.
8
Role of levan extracted from bacterial honey isolates in curing peptic ulcer: In vivo.
Int J Biol Macromol. 2020 Jan 1;142:564-573. doi: 10.1016/j.ijbiomac.2019.09.131. Epub 2019 Nov 17.
10
C-type lectin receptor-mediated immune recognition and response of the microbiota in the gut.
Gastroenterol Rep (Oxf). 2019 Jul 10;7(5):312-321. doi: 10.1093/gastro/goz028. eCollection 2019 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验