A.V. Bogatsky Physico-Chemical Institute of National Academy of Science of Ukraine, 65080 Odessa, Ukraine.
Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA.
Molecules. 2021 Apr 12;26(8):2225. doi: 10.3390/molecules26082225.
Synthetic and natural ionophores have been developed to catalyze ion transport and have been shown to exhibit a variety of biological effects. We synthesized 24 aza- and diaza-crown ethers containing adamantyl, adamantylalkyl, aminomethylbenzoyl, and ε-aminocaproyl substituents and analyzed their biological effects in vitro. Ten of the compounds (, -, and ) increased intracellular calcium ([Ca]) in human neutrophils, with the most potent being compound (,'-[2-(1-adamantyl)acetyl]-4,10-diaza-15-crown-5), suggesting that these compounds could alter normal neutrophil [Ca] flux. Indeed, a number of these compounds (i.e., , -, and ) inhibited [Ca] flux in human neutrophils activated by -formyl peptide (MLF). Some of these compounds also inhibited chemotactic peptide-induced [Ca] flux in HL60 cells transfected with N-formyl peptide receptor 1 or 2 (FPR1 or FPR2). In addition, several of the active compounds inhibited neutrophil reactive oxygen species production induced by phorbol 12-myristate 13-acetate (PMA) and neutrophil chemotaxis toward MLF, as both of these processes are highly dependent on regulated [Ca] flux. Quantum chemical calculations were performed on five structure-related diaza-crown ethers and their complexes with Ca, Na, and K to obtain a set of molecular electronic properties and to correlate these properties with biological activity. According to density-functional theory (DFT) modeling, Ca ions were more effectively bound by these compounds versus Na and K. The DFT-optimized structures of the ligand-Ca complexes and quantitative structure-activity relationship (QSAR) analysis showed that the carbonyl oxygen atoms of the ,'-diacylated diaza-crown ethers participated in cation binding and could play an important role in Ca transfer. Thus, our modeling experiments provide a molecular basis to explain at least part of the ionophore mechanism of biological action of aza-crown ethers.
合成和天然离子载体已被开发用于催化离子运输,并已显示出多种生物学效应。我们合成了 24 种含有金刚烷、金刚烷烷基、氨甲基苯甲酰基和 ε-氨基己酰基取代基的氮杂和二氮杂冠醚,并分析了它们在体外的生物学效应。其中 10 种化合物(、和)可增加人中性粒细胞内的钙([Ca]),其中最强的是化合物 (' - [2-(1-金刚烷)乙酰基]-4,10-二氮杂-15-冠-5),表明这些化合物可能改变正常中性粒细胞[Ca]流。事实上,这些化合物中的许多(即、和)抑制了由 -甲酰基肽(MLF)激活的人中性粒细胞中的[Ca]流。这些化合物中的一些也抑制了转染有 N-甲酰肽受体 1 或 2(FPR1 或 FPR2)的 HL60 细胞中趋化肽诱导的[Ca]流。此外,几种活性化合物抑制了佛波醇 12-肉豆蔻酸 13-醋酸酯(PMA)诱导的中性粒细胞活性氧物质产生和中性粒细胞向 MLF 的趋化性,因为这两个过程都高度依赖于调节[Ca]流。对五个结构相关的氮杂冠醚及其与 Ca、Na 和 K 的配合物进行了量子化学计算,以获得一组分子电子性质,并将这些性质与生物活性相关联。根据密度泛函理论(DFT)建模,与 Na 和 K 相比,这些化合物更有效地结合了 Ca 离子。配体-Ca 配合物的 DFT 优化结构和定量构效关系(QSAR)分析表明,' - 二酰化氮杂冠醚的羰基氧原子参与了阳离子结合,并可能在 Ca 转移中发挥重要作用。因此,我们的建模实验提供了一个分子基础,可以解释氮杂冠醚生物作用的离子载体机制的至少一部分。