Suppr超能文献

用于潜在生物传感应用的氮杂冠醚结构螯合碱金属阳离子选择性的理论研究。

A Theoretical Investigation of the Selectivity of Aza-Crown Ether Structures Chelating Alkali Metal Cations for Potential Biosensing Applications.

作者信息

Elayyan Mouhmad, Hoffmann Mark R, Sui Binglin

机构信息

Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA.

出版信息

Molecules. 2025 Jun 12;30(12):2571. doi: 10.3390/molecules30122571.

Abstract

Aza-crown ether structures have been proven to be effective in constructing fluorescent biosensors for selectively detecting and imaging alkali metal ions in biological environments. However, choosing the right aza-crown ether for a specific alkali metal ion remains challenging for synthetic chemists because theoretical guidance on the chelating activities between aza-crown ethers and alkali metal ions has not been available up to now. Predicting the physical properties of the chelator-metal complexations poses a greater challenge due to the numerous quantum mechanical functionals and basis sets to be used in any theoretical investigation. In this study, we report a theoretical investigation of different aza-crown ether structures and their selectivities to alkali metal ions via a novel relationship between the binding energy and charge transfer calculated using twelve different quantum mechanical methods, using a myriad of bases, within the Jacob's Ladder of Chemical Accuracies. Furthermore, this report represents a guide for the synthetic chemist in the selection of aza-crown ethers in the capturing of specific alkali metal ions, primary objectives, while benchmarking different quantum mechanical calculations, as a secondary objective.

摘要

氮杂冠醚结构已被证明在构建用于选择性检测生物环境中碱金属离子并进行成像的荧光生物传感器方面是有效的。然而,对于合成化学家来说,为特定的碱金属离子选择合适的氮杂冠醚仍然具有挑战性,因为到目前为止,尚未有关于氮杂冠醚与碱金属离子之间螯合活性的理论指导。由于在任何理论研究中都要使用众多的量子力学泛函和基组,预测螯合剂 - 金属络合物的物理性质带来了更大的挑战。在本研究中,我们通过使用十二种不同的量子力学方法,在化学精度的雅各布天梯范围内,利用无数种基组计算出的结合能与电荷转移之间的新关系,报告了对不同氮杂冠醚结构及其对碱金属离子选择性的理论研究。此外,本报告一方面为合成化学家在捕获特定碱金属离子时选择氮杂冠醚提供了指导,这是主要目标,另一方面作为次要目标,对不同的量子力学计算进行了基准测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30db/12195789/738205fe04b4/molecules-30-02571-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验