Min Shin-Yi, Cho Won-Ju
Department of Electronic Materials Engineering, Kwangwoon University, 20, Gwangun-ro, Nowon-gu, Seoul 01897, Korea.
Nanomaterials (Basel). 2021 Apr 22;11(5):1081. doi: 10.3390/nano11051081.
In this study, we implemented a high-performance two-terminal memristor device with a metal/insulator/metal (MIM) structure using a solution-derived In-Ga-Zn-Oxide (IGZO)-based nanocomposite as a resistive switching (RS) layer. In order to secure stable memristive switching characteristics, IGZO:N nanocomposites were synthesized through the microwave-assisted nitridation of solution-derived IGZO thin films, and the resulting improvement in synaptic characteristics was systematically evaluated. The microwave-assisted nitridation of solution-derived IGZO films was clearly demonstrated by chemical etching, optical absorption coefficient analysis, and X-ray photoelectron spectroscopy. Two types of memristor devices were prepared using an IGZO or an IGZO:N nanocomposite film as an RS layer. As a result, the IGZO:N memristors showed excellent endurance and resistance distribution in the 10 repeated cycling tests, while the IGZO memristors showed poor characteristics. Furthermore, in terms of electrical synaptic operation, the IGZO:N memristors possessed a highly stable nonvolatile multi-level resistance controllability and yielded better electric pulse-induced conductance modulation in 5 × 10 stimulation pulses. These findings demonstrate that the microwave annealing process is an effective synthesis strategy for the incorporation of chemical species into the nanocomposite framework, and that the microwave-assisted nitridation improves the memristive switching characteristics in the oxide-based RS layer.
在本研究中,我们使用溶液衍生的基于铟镓锌氧化物(IGZO)的纳米复合材料作为电阻开关(RS)层,实现了一种具有金属/绝缘体/金属(MIM)结构的高性能两终端忆阻器器件。为确保稳定的忆阻开关特性,通过对溶液衍生的IGZO薄膜进行微波辅助氮化合成了IGZO:N纳米复合材料,并系统评估了由此产生的突触特性改善情况。通过化学蚀刻、光吸收系数分析和X射线光电子能谱清楚地证明了溶液衍生的IGZO薄膜的微波辅助氮化。使用IGZO或IGZO:N纳米复合薄膜作为RS层制备了两种类型的忆阻器器件。结果,IGZO:N忆阻器在10次重复循环测试中表现出优异的耐久性和电阻分布,而IGZO忆阻器表现出较差的特性。此外,在电突触操作方面,IGZO:N忆阻器具有高度稳定的非易失性多电平电阻可控性,并且在5×10次刺激脉冲中产生了更好的电脉冲诱导电导调制。这些发现表明,微波退火工艺是将化学物种纳入纳米复合框架的有效合成策略,并且微波辅助氮化改善了基于氧化物的RS层中的忆阻开关特性。