School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA.
Department of Neurosciences, UConn Health, Farmington, CT 06032, USA.
Cells. 2021 Apr 25;10(5):1011. doi: 10.3390/cells10051011.
Ischemic stroke and factors modifying ischemic stroke responses, such as social isolation, contribute to long-term disability worldwide. Several studies demonstrated that the aberrant levels of microRNAs contribute to ischemic stroke injury. In prior studies, we established that miR-141-3p increases after ischemic stroke and post-stroke isolation. Herein, we explored two different anti-miR oligonucleotides; peptide nucleic acid (PNAs) and phosphorothioates (PS) for ischemic stroke therapy. We used US FDA approved biocompatible poly (lactic-co-glycolic acid) (PLGA)-based nanoparticle formulations for delivery. The PNA and PS anti-miRs were encapsulated in PLGA nanoparticles by double emulsion solvent evaporation technique. All the formulated nanoparticles showed uniform morphology, size, distribution, and surface charge density. Nanoparticles also exhibited a controlled nucleic acid release profile for 48 h. Further, we performed in vivo studies in the mouse model of ischemic stroke. Ischemic stroke was induced by transient (60 min) occlusion of middle cerebral artery occlusion followed by a reperfusion for 48 or 72 h. We assessed the blood-brain barrier permeability of PLGA NPs containing fluorophore (TAMRA) anti-miR probe after systemic delivery. Confocal imaging shows uptake of fluorophore tagged anti-miR in the brain parenchyma. Next, we evaluated the therapeutic efficacy after systemic delivery of nanoparticles containing PNA and PS anti-miR-141-3p in mice after stroke. Post-treatment differentially reduced both miR-141-3p levels in brain tissue and infarct injury. We noted PNA-based anti-miR showed superior efficacy compared to PS-based anti-miR. Herein, we successfully established that nanoparticles encapsulating PNA or PS-based anti-miRs-141-3p probes could be used as a potential treatment for ischemic stroke.
缺血性中风以及社会隔离等改变缺血性中风反应的因素在全球范围内导致长期残疾。几项研究表明,异常的 microRNAs 水平会导致缺血性中风损伤。在之前的研究中,我们发现 miR-141-3p 在缺血性中风和中风后隔离后水平升高。在此,我们探索了两种不同的反义 microRNA 寡核苷酸;肽核酸(PNA)和硫代磷酸酯(PS)用于治疗缺血性中风。我们使用美国食品和药物管理局批准的生物相容性聚(乳酸-共-羟基乙酸)(PLGA)为基础的纳米粒子制剂进行递送。PNA 和 PS 反义 miR 通过双乳液溶剂蒸发技术包封在 PLGA 纳米粒子中。所有配制的纳米粒子均显示出均匀的形态、大小、分布和表面电荷密度。纳米粒子还表现出 48 小时的受控核酸释放特性。此外,我们在缺血性中风的小鼠模型中进行了体内研究。通过短暂(60 分钟)阻断大脑中动脉闭塞后再灌注 48 或 72 小时来诱导缺血性中风。我们评估了系统递送含荧光团(TAMRA)反义 miR 探针的 PLGA NPs 后的血脑屏障通透性。共聚焦成像显示荧光标记的反义 miR 在脑实质中的摄取。接下来,我们评估了在中风后系统递送含有 PNA 和 PS 抗 miR-141-3p 的纳米粒子后的治疗效果。治疗后,脑组织中的 miR-141-3p 水平和梗死损伤均降低。我们注意到基于 PNA 的反义 miR 比基于 PS 的反义 miR 显示出更好的疗效。在此,我们成功地建立了包封 PNA 或 PS 基抗 miR-141-3p 探针的纳米粒子可作为缺血性中风的潜在治疗方法。