Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.
Sensors (Basel). 2021 Apr 25;21(9):3007. doi: 10.3390/s21093007.
Diabetes patients are at risk of having chronic wounds, which would take months to years to resolve naturally. Chronic wounds can be countered using the electrical stimulation technique (EST) by dielectrophoresis (DEP), which is label-free, highly sensitive, and selective for particle trajectory. In this study, we focus on the validation of polystyrene particles of 3.2 and 4.8 μm to predict the behavior of keratinocytes to estimate their crossover frequency () using the DEP force () for particle manipulation. MyDEP is a piece of java-based stand-alone software used to consider the dielectric particle response to AC electric fields and analyzes the electrical properties of biological cells. The prototypic 3.2 and 4.8 μm polystyrene particles have values from MyDEP of 425.02 and 275.37 kHz, respectively. Fibroblast cells were also subjected to numerical analysis because the interaction of keratinocytes and fibroblast cells is essential for wound healing. Consequently, the predicted from the MyDEP plot for keratinocyte and fibroblast cells are 510.53 and 28.10 MHz, respectively. The finite element method (FEM) is utilized to compute the electric field intensity and particle trajectory based on DEP and drag forces. Moreover, the particle trajectories are quantified in a high and low conductive medium. To justify the simulation, further DEP experiments are carried out by applying a non-uniform electric field to a mixture of different sizes of polystyrene particles and keratinocyte cells, and these results are well agreed. The alive keratinocyte cells exhibit force in a highly conductive medium from 100 kHz to 25 MHz. 2D/3D motion analysis software (DIPP-MotionV) can also perform image analysis of keratinocyte cells and evaluate the average speed, acceleration, and trajectory position. The resultant force can align the keratinocyte cells in the wound site upon suitable applied frequency. Thus, MyDEP estimates the Clausius-Mossotti factors (CMF), FEM computes the cell trajectory, and the experimental results of prototypic polystyrene particles are well correlated and provide an optimistic response towards keratinocyte cells for rapid wound healing applications.
糖尿病患者有患慢性伤口的风险,这些伤口自然愈合需要数月甚至数年的时间。可以使用介电泳(DEP)的电刺激技术(EST)来对抗慢性伤口,该技术无标记、高度敏感且对颗粒轨迹具有选择性。在这项研究中,我们专注于验证 3.2 和 4.8 μm 的聚苯乙烯颗粒,以预测角质细胞的行为,从而使用 DEP 力()估计它们的交叉频率()来操纵颗粒。MyDEP 是一款基于 Java 的独立软件,用于考虑介电粒子对交流电场的响应,并分析生物细胞的电特性。原型 3.2 和 4.8 μm 聚苯乙烯颗粒的 值分别为 MyDEP 的 425.02 和 275.37 kHz。由于角质细胞和成纤维细胞的相互作用对于伤口愈合至关重要,因此还对成纤维细胞进行了数值分析。因此,从 MyDEP 图预测的角质细胞和成纤维细胞的 值分别为 510.53 和 28.10 MHz。有限元法(FEM)用于根据 DEP 和阻力计算电场强度和颗粒轨迹。此外,在高导电和低导电介质中量化了颗粒轨迹。为了验证模拟,通过在不同尺寸的聚苯乙烯颗粒和角质细胞混合物上施加非均匀电场,进一步进行了 DEP 实验,结果吻合良好。在高导电介质中,活的角质细胞在 100 kHz 至 25 MHz 的范围内表现出 力。二维/三维运动分析软件(DIPP-MotionV)还可以对角质细胞进行图像分析,并评估平均速度、加速度和轨迹位置。合适施加频率下的 力可以使角质细胞在伤口部位对齐。因此,MyDEP 估计 Clausius-Mossotti 因子(CMF),FEM 计算细胞轨迹,原型聚苯乙烯颗粒的实验结果很好地相关,并为快速伤口愈合应用提供了对角质细胞的乐观响应。