Hoffmann Andreas, Kuehne Alexander J C
Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52076 Aachen, Germany.
Polymers (Basel). 2021 Apr 16;13(8):1313. doi: 10.3390/polym13081313.
Carbon nanofiber nonwovens are promising materials for electrode or filtration applications; however, their utilization is obviated by a lack of high throughput production methods. In this study, we utilize a highly effective high-throughput method for the fabrication of polyacrylonitrile (PAN) nanofibers as a nonwoven on a dedicated substrate. The method employs rotational-, air pressure- and electrostatic forces to produce fibers from the inner edge of a rotating bell towards a flat collector. We investigate the impact of all above-mentioned forces on the fiber diameter, morphology, and bundling of the carbon-precursor PAN fibers. The interplay of radial forces with collector-facing forces has an influence on the uniformity of fiber deposition. Finally, the obtained PAN nanofibers are converted to carbon nonwovens by thermal treatment.
碳纳米纤维无纺布是电极或过滤应用中很有前景的材料;然而,由于缺乏高通量生产方法,它们的应用受到了限制。在本研究中,我们利用一种高效的高通量方法,在专用基材上制备聚丙烯腈(PAN)纳米纤维无纺布。该方法利用旋转力、气压和静电力,从旋转钟罩的内边缘向扁平收集器生产纤维。我们研究了上述所有力对碳前驱体PAN纤维的纤维直径、形态和束状结构的影响。径向力与面向收集器的力之间的相互作用会影响纤维沉积的均匀性。最后,通过热处理将所得的PAN纳米纤维转化为碳无纺布。