Schossig John, Hao Qiangjun, Davide Tyler, Towolawi Adedayo, Zhang Cheng, Lu Ping
Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States.
Chemistry Department, Long Island University (Post), Brookville, New York 11548, United States.
ACS Appl Eng Mater. 2024 Dec 3;2(12):2970-2983. doi: 10.1021/acsaenm.4c00657. eCollection 2024 Dec 27.
Carbon-based nanofibers are critical materials with broad applications in industries such as energy, filtration, and biomedical devices. Polyacrylonitrile (PAN) is a primary precursor for carbon nanofibers, but conventional electrospinning techniques typically operate at low production rates of 0.1-1 mL/h from a single spinneret, limiting scalability. In this study, we introduce a novel liquid-assisted ultrahigh-speed electrospinning (LAUHS-ES) technique that achieved actual production rates over 220 times faster than conventional methods. This dramatic increase in throughput is achieved through Taylor cone stabilization using a thin layer of liquid sheath, allowing for ultrahigh-speed electrospinning without compromising the structural integrity or uniformity of the nanofibers. Comprehensive characterization, including scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD), confirmed the high quality, consistency, and crystallinity of the produced nanofibers. Our results demonstrate that PAN nanofiber fabrication can be scaled up significantly while maintaining precise control over fiber morphology and performance. This advancement holds substantial promise for large-scale industrial applications, enabling more efficient and cost-effective production of carbon-based nanofibers.
碳基纳米纤维是关键材料,在能源、过滤和生物医学设备等行业有着广泛应用。聚丙烯腈(PAN)是碳纳米纤维的主要前驱体,但传统静电纺丝技术通常从单个喷丝头以0.1 - 1 mL/h的低生产率运行,限制了可扩展性。在本研究中,我们引入了一种新型的液体辅助超高速静电纺丝(LAUHS - ES)技术,其实际生产率比传统方法快220倍以上。通过使用薄液鞘层实现泰勒锥稳定化,从而大幅提高了产量,实现了超高速静电纺丝,同时不影响纳米纤维的结构完整性或均匀性。包括扫描电子显微镜(SEM)、原子力显微镜(AFM)、傅里叶变换红外光谱(FTIR)和X射线衍射(XRD)在内的全面表征证实了所制备纳米纤维的高质量、一致性和结晶度。我们的结果表明,PAN纳米纤维的制造可以在显著扩大规模的同时,保持对纤维形态和性能的精确控制。这一进展为大规模工业应用带来了巨大希望,能够更高效、经济地生产碳基纳米纤维。