Suppr超能文献

比较星载和无人机载遥感光谱数据估算季风作物植被参数。

Comparison of Spaceborne and UAV-Borne Remote Sensing Spectral Data for Estimating Monsoon Crop Vegetation Parameters.

机构信息

Grassland Science and Renewable Plant Resources, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany.

出版信息

Sensors (Basel). 2021 Apr 20;21(8):2886. doi: 10.3390/s21082886.

Abstract

Various remote sensing data have been successfully applied to monitor crop vegetation parameters for different crop types. Those successful applications mostly focused on one sensor system or a single crop type. This study compares how two different sensor data (spaceborne multispectral vs unmanned aerial vehicle borne hyperspectral) can estimate crop vegetation parameters from three monsoon crops in tropical regions: finger millet, maize, and lablab. The study was conducted in two experimental field layouts (irrigated and rainfed) in Bengaluru, India, over the primary agricultural season in 2018. Each experiment contained = 4 replicates of three crops with three different nitrogen fertiliser treatments. Two regression algorithms were employed to estimate three crop vegetation parameters: leaf area index, leaf chlorophyll concentration, and canopy water content. Overall, no clear pattern emerged of whether multispectral or hyperspectral data is superior for crop vegetation parameter estimation: hyperspectral data showed better estimation accuracy for finger millet vegetation parameters, while multispectral data indicated better results for maize and lablab vegetation parameter estimation. This study's outcome revealed the potential of two remote sensing platforms and spectral data for monitoring monsoon crops also provide insight for future studies in selecting the optimal remote sensing spectral data for monsoon crop parameter estimation.

摘要

各种遥感数据已成功应用于监测不同作物类型的作物植被参数。这些成功的应用主要集中在一个传感器系统或单一作物类型上。本研究比较了两种不同的传感器数据(星载多光谱与无人机载高光谱)如何从热带地区的三种季风作物(手指小米、玉米和拉巴豆)中估算作物植被参数。该研究在印度班加罗尔的两个实验性田间布局(灌溉和雨养)中进行,时间跨度为 2018 年的主要农业季节。每个实验都包含 4 个复制品,每个复制品有 3 种不同氮肥处理的 3 种作物。采用两种回归算法来估算三种作物的植被参数:叶面积指数、叶片叶绿素浓度和冠层含水量。总体而言,对于作物植被参数估计,多光谱数据还是高光谱数据更优,没有明显的模式:高光谱数据在手性小米植被参数估计方面表现出更好的估计精度,而多光谱数据在手性玉米和拉巴豆植被参数估计方面表现出更好的结果。本研究的结果表明,两种遥感平台和光谱数据都具有监测季风作物的潜力,也为未来选择最佳遥感光谱数据进行季风作物参数估计的研究提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc56/8074391/eb9c521245cc/sensors-21-02886-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验