Suppr超能文献

基于12导联心电图P波的左心房纤维化无创定量估计——一项涵盖解剖变异的大规模计算研究

Non-Invasive and Quantitative Estimation of Left Atrial Fibrosis Based on P Waves of the 12-Lead ECG-A Large-Scale Computational Study Covering Anatomical Variability.

作者信息

Nagel Claudia, Luongo Giorgio, Azzolin Luca, Schuler Steffen, Dössel Olaf, Loewe Axel

机构信息

Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany.

出版信息

J Clin Med. 2021 Apr 20;10(8):1797. doi: 10.3390/jcm10081797.

Abstract

The arrhythmogenesis of atrial fibrillation is associated with the presence of fibrotic atrial tissue. Not only fibrosis but also physiological anatomical variability of the atria and the thorax reflect in altered morphology of the P wave in the 12-lead electrocardiogram (ECG). Distinguishing between the effects on the P wave induced by local atrial substrate changes and those caused by healthy anatomical variations is important to gauge the potential of the 12-lead ECG as a non-invasive and cost-effective tool for the early detection of fibrotic atrial cardiomyopathy to stratify atrial fibrillation propensity. In this work, we realized 54,000 combinations of different atria and thorax geometries from statistical shape models capturing anatomical variability in the general population. For each atrial model, 10 different volume fractions (0-45%) were defined as fibrotic. Electrophysiological simulations in sinus rhythm were conducted for each model combination and the respective 12-lead ECGs were computed. P wave features (duration, amplitude, dispersion, terminal force in V1) were extracted and compared between the healthy and the diseased model cohorts. All investigated feature values systematically in- or decreased with the left atrial volume fraction covered by fibrotic tissue, however value ranges overlapped between the healthy and the diseased cohort. Using all extracted P wave features as input values, the amount of the fibrotic left atrial volume fraction was estimated by a neural network with an absolute root mean square error of 8.78%. Our simulation results suggest that although all investigated P wave features highly vary for different anatomical properties, the combination of these features can contribute to non-invasively estimate the volume fraction of atrial fibrosis using ECG-based machine learning approaches.

摘要

心房颤动的心律失常机制与纤维化心房组织的存在有关。不仅纤维化,心房和胸部的生理解剖变异也反映在12导联心电图(ECG)中P波形态的改变上。区分局部心房基质变化和健康解剖变异对P波的影响,对于评估12导联ECG作为一种非侵入性且经济高效的工具用于早期检测纤维化心房心肌病以分层心房颤动倾向的潜力至关重要。在这项工作中,我们从统计形状模型中实现了54000种不同心房和胸部几何形状的组合,这些模型捕捉了一般人群中的解剖变异。对于每个心房模型,定义了10种不同的体积分数(0 - 45%)作为纤维化程度。对每个模型组合进行窦性心律下的电生理模拟,并计算相应的12导联ECG。提取P波特征(持续时间、振幅、离散度、V1导联的终末力)并在健康和患病模型队列之间进行比较。所有研究的特征值都随着纤维化组织覆盖的左心房体积分数系统地增加或减少,然而健康和患病队列之间的值范围存在重叠。使用所有提取的P波特征作为输入值,通过神经网络估计纤维化左心房体积分数,绝对均方根误差为8.78%。我们的模拟结果表明,尽管所有研究的P波特征因不同的解剖特性而有很大差异,但这些特征的组合有助于使用基于ECG的机器学习方法非侵入性地估计心房纤维化的体积分数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/959a/8074591/0ef1d5992aa5/jcm-10-01797-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验