Gand Mathieu, Vanneste Kevin, Thomas Isabelle, Van Gucht Steven, Capron Arnaud, Herman Philippe, Roosens Nancy H C, De Keersmaecker Sigrid C J
Transversal Activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium.
Viral Diseases, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium.
Genes (Basel). 2021 Apr 13;12(4):565. doi: 10.3390/genes12040565.
For 1 year now, the world is undergoing a coronavirus disease-2019 (COVID-19) pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The most widely used method for COVID-19 diagnosis is the detection of viral RNA by RT-qPCR with a specific set of primers and probe. It is important to frequently evaluate the performance of these tests and this can be done first by an in silico approach. Previously, we reported some mismatches between the oligonucleotides of publicly available RT-qPCR assays and SARS-CoV-2 genomes collected from GISAID and NCBI, potentially impacting proper detection of the virus. In the present study, 11 primers and probe sets investigated during the first study were evaluated again with 84,305 new SARS-CoV-2 unique genomes collected between June 2020 and January 2021. The lower inclusivity of the China CDC assay targeting the gene N has continued to decrease with new mismatches detected, whereas the other evaluated assays kept their inclusivity above 99%. Additionally, some mutations specific to new SARS-CoV-2 variants of concern were found to be located in oligonucleotide annealing sites. This might impact the strategy to be considered for future SARS-CoV-2 testing. Given the potential threat of the new variants, it is crucial to assess if they can still be correctly targeted by the primers and probes of the RT-qPCR assays. Our study highlights that considering the evolution of the virus and the emergence of new variants, an in silico (re-)evaluation should be performed on a regular basis. Ideally, this should be done for all the RT-qPCR assays employed for SARS-CoV-2 detection, including also commercial tests, although the primer and probe sequences used in these kits are rarely disclosed, which impedes independent performance evaluation.
一年来,由于严重急性呼吸综合征冠状病毒2(SARS-CoV-2),世界正经历2019冠状病毒病(COVID-19)大流行。COVID-19诊断最广泛使用的方法是通过逆转录定量聚合酶链反应(RT-qPCR),使用一组特定的引物和探针来检测病毒RNA。经常评估这些检测的性能很重要,这可以首先通过计算机模拟方法来完成。此前,我们报告了公开可用的RT-qPCR检测试剂盒的寡核苷酸与从全球共享流感数据倡议组织(GISAID)和美国国立生物技术信息中心(NCBI)收集的SARS-CoV-2基因组之间存在一些错配,这可能会影响对该病毒的正确检测。在本研究中,我们再次使用2020年6月至2021年1月期间收集的84305个新的SARS-CoV-2独特基因组,对首次研究中调查的11个引物和探针组进行了评估。针对N基因的中国疾病预防控制中心(China CDC)检测方法的较低包容性随着新错配的发现而持续下降,而其他评估的检测方法的包容性保持在99%以上。此外,还发现一些新的值得关注的SARS-CoV-2变异株特有的突变位于寡核苷酸退火位点。这可能会影响未来SARS-CoV-2检测应考虑的策略。鉴于新变异株的潜在威胁,评估它们是否仍能被RT-qPCR检测的引物和探针正确靶向至关重要。我们的研究强调,考虑到病毒的进化和新变异株的出现,应定期进行计算机模拟(重新)评估。理想情况下,对于所有用于SARS-CoV-2检测的RT-qPCR检测,包括商业检测,都应该这样做,尽管这些试剂盒中使用的引物和探针序列很少公开,这妨碍了独立的性能评估。