Suppr超能文献

用于电化学传感的环保绿色合成石墨烯量子点:最新进展与未来展望

Graphene Quantum Dots by Eco-Friendly Green Synthesis for Electrochemical Sensing: Recent Advances and Future Perspectives.

作者信息

Bressi Viviana, Ferlazzo Angelo, Iannazzo Daniela, Espro Claudia

机构信息

Dipartimento di Ingegneria, Università di Messina, Contrada di Dio, Vill. S. Agata, I-98166 Messina, Italy.

出版信息

Nanomaterials (Basel). 2021 Apr 26;11(5):1120. doi: 10.3390/nano11051120.

Abstract

The continuous decrease in the availability of fossil resources, along with an evident energy crisis, and the growing environmental impact due to their use, has pushed scientific research towards the development of innovative strategies and green routes for the use of renewable resources, not only in the field of energy production but also for the production of novel advanced materials and platform molecules for the modern chemical industry. A new class of promising carbon nanomaterials, especially graphene quantum dots (GQDs), due to their exceptional chemical-physical features, have been studied in many applications, such as biosensors, solar cells, electrochemical devices, optical sensors, and rechargeable batteries. Therefore, this review focuses on recent results in GQDs synthesis by green, easy, and low-cost synthetic processes from eco-friendly raw materials and biomass-waste. Significant advances in recent years on promising recent applications in the field of electrochemical sensors, have also been discussed. Finally, challenges and future perspectives with possible research directions in the topic are briefly summarized.

摘要

化石资源的可用性持续下降,伴随着明显的能源危机,以及因其使用而日益严重的环境影响,推动了科学研究朝着开发创新策略和绿色途径的方向发展,以利用可再生资源,不仅用于能源生产领域,还用于为现代化学工业生产新型先进材料和平台分子。一类新的有前途的碳纳米材料,特别是石墨烯量子点(GQDs),由于其特殊的化学物理特性,已在许多应用中得到研究,如生物传感器、太阳能电池、电化学装置、光学传感器和可充电电池。因此,本综述重点关注通过绿色、简便且低成本的合成工艺,从环保原料和生物质废物中合成GQDs的最新成果。还讨论了近年来在电化学传感器领域有前途的最新应用方面的重大进展。最后,简要总结了该主题的挑战、未来前景以及可能的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd73/8146976/216ab5c8b07a/nanomaterials-11-01120-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验