Yan Zhengjian, Chu Lei, Jia Xiaojiong, Lin Lu, Cheng Si
Department of Orthopedics, the Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Cell Biosci. 2021 Apr 29;11(1):80. doi: 10.1186/s13578-021-00584-7.
Stem cell therapy using neural progenitor cells (NPCs) shows promise in mitigating the debilitating effects of spinal cord injury (SCI). Notably, myelin stimulates axonal regeneration from mammalian NPCs. This led us to hypothesize that myelin-associated proteins may contribute to axonal regeneration from NPCs.
We conducted an R-based bioinformatics analysis to identify key gene(s) that may participate in myelin-associated axonal regeneration from murine NPCs, which identified the serine protease myelin basic protein (Mbp). We employed E12 murine NPCs, E14 rat NPCs, and human iPSC-derived Day 1 NPCs (D1 hNPCs) with or without CRISPR/Cas9-mediated Mbp knockout in combination with rescue L1-70 overexpression, constitutively-active VP16-PPARγ2, or the PPARγ agonist ciglitazone. A murine dorsal column crush model of SCI utilizing porous collagen-based scaffolding (PCS)-seeded murine NPCs with or without stable Mbp overexpression was used to assess locomotive recovery and axonal regeneration in vivo.
Myelin promotes axonal outgrowth from NPCs in an Mbp-dependent manner and that Mbp's stimulatory effects on NPC neurite outgrowth are mediated by Mbp's production of L1-70. Furthermore, we determined that Mbp/L1-70's stimulatory effects on NPC neurite outgrowth are mediated by PPARγ-based repression of neuron differentiation-associated gene expression and PPARγ-based Erk1/2 activation. In vivo, PCS-seeded murine NPCs stably overexpressing Mbp significantly enhanced locomotive recovery and axonal regeneration in post-SCI mice.
We discovered that Mbp supports axonal regeneration from mammalian NPCs through the novel Mbp/L1cam/Pparγ signaling pathway. This study suggests that bioengineered, NPC-based interventions can promote axonal regeneration and functional recovery post-SCI.
使用神经祖细胞(NPCs)的干细胞疗法在减轻脊髓损伤(SCI)的衰弱影响方面显示出前景。值得注意的是,髓磷脂可刺激哺乳动物NPCs的轴突再生。这使我们推测髓磷脂相关蛋白可能有助于NPCs的轴突再生。
我们进行了基于R的生物信息学分析,以鉴定可能参与小鼠NPCs髓磷脂相关轴突再生的关键基因,鉴定出丝氨酸蛋白酶髓磷脂碱性蛋白(Mbp)。我们使用了E12小鼠NPCs、E14大鼠NPCs以及人诱导多能干细胞衍生的第1天NPCs(D1 hNPCs),有或没有CRISPR/Cas9介导的Mbp基因敲除,并结合挽救性L1-70过表达、组成型活性VP16-PPARγ2或PPARγ激动剂吡格列酮。利用植入了有或没有稳定Mbp过表达的多孔胶原基支架(PCS)的小鼠NPCs的SCI小鼠背柱挤压模型,在体内评估运动恢复和轴突再生情况。
髓磷脂以Mbp依赖的方式促进NPCs的轴突生长,并且Mbp对NPCs神经突生长的刺激作用是由Mbp产生的L1-70介导的。此外,我们确定Mbp/L1-70对NPCs神经突生长的刺激作用是由基于PPARγ对神经元分化相关基因表达的抑制以及基于PPARγ的Erk1/2激活介导的。在体内,稳定过表达Mbp的植入PCS的小鼠NPCs显著增强了SCI后小鼠的运动恢复和轴突再生。
我们发现Mbp通过新的Mbp/L1cam/Pparγ信号通路支持哺乳动物NPCs的轴突再生。这项研究表明,基于生物工程的、以NPCs为基础的干预措施可以促进SCI后的轴突再生和功能恢复。