Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98121;
Medical Care Development International, Silver Spring, MD 20910.
Proc Natl Acad Sci U S A. 2021 May 4;118(18). doi: 10.1073/pnas.2007488118.
Newly available datasets present exciting opportunities to investigate how human population movement contributes to the spread of infectious diseases across large geographical distances. It is now possible to construct realistic models of infectious disease dynamics for the purposes of understanding global-scale epidemics. Nevertheless, a remaining unanswered question is how best to leverage the new data to parameterize models of movement, and whether one's choice of movement model impacts modeled disease outcomes. We adapt three well-studied models of infectious disease dynamics, the susceptible-infected-recovered model, the susceptible-infected-susceptible model, and the Ross-Macdonald model, to incorporate either of two candidate movement models. We describe the effect that the choice of movement model has on each disease model's results, finding that in all cases, there are parameter regimes where choosing one movement model instead of another has a profound impact on epidemiological outcomes. We further demonstrate the importance of choosing an appropriate movement model using the applied case of malaria transmission and importation on Bioko Island, Equatorial Guinea, finding that one model produces intelligible predictions of , whereas the other produces nonsensical results.
新出现的数据集为研究人类人口流动如何导致传染病在大地理距离上传播提供了令人兴奋的机会。现在,人们有可能构建现实的传染病动力学模型,以了解全球范围内的流行病。然而,一个悬而未决的问题是如何最好地利用新数据来为移动模型进行参数化,以及移动模型的选择是否会影响模型化的疾病结果。我们将三种经过充分研究的传染病动力学模型,即易感-感染-恢复模型、易感-感染-易感模型和罗斯-麦克唐纳模型,改编为纳入两种候选移动模型中的任意一种。我们描述了移动模型的选择对每种疾病模型结果的影响,发现无论哪种情况,在某些参数范围内,选择一种移动模型而不是另一种模型对流行病学结果有深远的影响。我们进一步通过赤道几内亚比奥科岛疟疾传播和输入的应用案例说明了选择适当移动模型的重要性,发现一种模型可以对 做出合理的预测,而另一种模型则会产生不合理的结果。