Suppr超能文献

呼叫详细记录聚合方法会影响基于人类流动性的传染病模型。

Call detail record aggregation methodology impacts infectious disease models informed by human mobility.

机构信息

Department of Geography, University College London, London, United Kingdom.

Ghana Statistical Service, Accra, Ghana.

出版信息

PLoS Comput Biol. 2023 Aug 10;19(8):e1011368. doi: 10.1371/journal.pcbi.1011368. eCollection 2023 Aug.

Abstract

This paper demonstrates how two different methods used to calculate population-level mobility from Call Detail Records (CDR) produce varying predictions of the spread of epidemics informed by these data. Our findings are based on one CDR dataset describing inter-district movement in Ghana in 2021, produced using two different aggregation methodologies. One methodology, "all pairs," is designed to retain long distance network connections while the other, "sequential" methodology is designed to accurately reflect the volume of travel between locations. We show how the choice of methodology feeds through models of human mobility to the predictions of a metapopulation SEIR model of disease transmission. We also show that this impact varies depending on the location of pathogen introduction and the transmissibility of infections. For central locations or highly transmissible diseases, we do not observe significant differences between aggregation methodologies on the predicted spread of disease. For less transmissible diseases or those introduced into remote locations, we find that the choice of aggregation methodology influences the speed of spatial spread as well as the size of the peak number of infections in individual districts. Our findings can help researchers and users of epidemiological models to understand how methodological choices at the level of model inputs may influence the results of models of infectious disease transmission, as well as the circumstances in which these choices do not alter model predictions.

摘要

本文展示了两种不同的方法如何从通话记录(CDR)中计算人群水平的流动性,这些方法对基于这些数据的传染病传播产生了不同的预测。我们的研究结果基于一个描述 2021 年加纳区际流动的 CDR 数据集,该数据集使用了两种不同的聚合方法学。一种方法学是“所有对”,旨在保留长距离网络连接,而另一种方法学是“顺序”,旨在准确反映地点之间的旅行量。我们展示了方法学的选择如何通过人类流动性模型影响疾病传播的元种群 SEIR 模型的预测。我们还表明,这种影响取决于病原体引入的位置和感染的传染性。对于中心位置或高度传染性疾病,我们在预测疾病的传播方面没有观察到聚合方法学之间的显著差异。对于传染性较低或引入偏远地区的疾病,我们发现聚合方法学的选择会影响空间传播的速度以及单个地区感染峰值数量的大小。我们的研究结果可以帮助研究人员和传染病模型用户了解模型输入层面的方法学选择如何影响传染病传播模型的结果,以及在何种情况下这些选择不会改变模型预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/090a/10443843/cbcce51029a6/pcbi.1011368.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验