Suppr超能文献

用于预测传染病传播背景下人类移动性的数学模型:引入阻抗模型。

Mathematical models for predicting human mobility in the context of infectious disease spread: introducing the impedance model.

机构信息

INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Aix Marseille Univ, Marseille, France.

Prospective et Coopération, Laboratoire d'Idées, Bureau d'Etudes Recherche, Marseille, France.

出版信息

Int J Health Geogr. 2017 Nov 22;16(1):42. doi: 10.1186/s12942-017-0115-7.

Abstract

BACKGROUND

Mathematical models of human mobility have demonstrated a great potential for infectious disease epidemiology in contexts of data scarcity. While the commonly used gravity model involves parameter tuning and is thus difficult to implement without reference data, the more recent radiation model based on population densities is parameter-free, but biased. In this study we introduce the new impedance model, by analogy with electricity. Previous research has compared models on the basis of a few specific available spatial patterns. In this study, we use a systematic simulation-based approach to assess the performances.

METHODS

Five hundred spatial patterns were generated using various area sizes and location coordinates. Model performances were evaluated based on these patterns. For simulated data, comparison measures were average root mean square error (aRMSE) and bias criteria. Modeling of the 2010 Haiti cholera epidemic with a basic susceptible-infected-recovered (SIR) framework allowed an empirical evaluation through assessing the goodness-of-fit of the observed epidemic curve.

RESULTS

The new, parameter-free impedance model outperformed previous models on simulated data according to average aRMSE and bias criteria. The impedance model achieved better performances with heterogeneous population densities and small destination populations. As a proof of concept, the basic compartmental SIR framework was used to confirm the results obtained with the impedance model in predicting the spread of cholera in Haiti in 2010.

CONCLUSIONS

The proposed new impedance model provides accurate estimations of human mobility, especially when the population distribution is highly heterogeneous. This model can therefore help to achieve more accurate predictions of disease spread in the context of an epidemic.

摘要

背景

在数据匮乏的情况下,人类移动性的数学模型已被证明在传染病流行病学中具有巨大潜力。虽然常用的引力模型涉及参数调整,因此没有参考数据很难实施,但基于人口密度的最新辐射模型则是无参数的,但存在偏差。在这项研究中,我们通过类比电,引入了新的阻抗模型。以前的研究已经根据少数特定的可用空间模式对模型进行了比较。在这项研究中,我们使用系统的基于模拟的方法来评估性能。

方法

使用各种面积大小和位置坐标生成了 500 个空间模式。根据这些模式评估模型性能。对于模拟数据,比较指标是平均均方根误差(aRMSE)和偏差标准。使用基本的易感-感染-恢复(SIR)框架对 2010 年海地霍乱流行进行建模,通过评估观察到的流行曲线的拟合优度,可以进行经验评估。

结果

根据平均 aRMSE 和偏差标准,新的无参数阻抗模型在模拟数据上优于以前的模型。阻抗模型在人口密度不均匀和小目的地人口的情况下表现更好。作为概念验证,基本的隔间 SIR 框架用于确认阻抗模型在预测 2010 年海地霍乱传播方面的结果。

结论

提出的新阻抗模型可以准确估计人类的流动性,特别是在人口分布高度不均匀的情况下。因此,该模型可以帮助在疫情背景下更准确地预测疾病的传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd68/5700689/4a225d7c73b9/12942_2017_115_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验