Suppr超能文献

基于脑电图的主动触觉探索中使用不变表示学习网络的纹理粗糙度分类

EEG-based texture roughness classification in active tactile exploration with invariant representation learning networks.

作者信息

Özdenizci Ozan, Eldeeb Safaa, Demir Andaç, Erdoğmuş Deniz, Akçakaya Murat

机构信息

Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA.

Institute of Theoretical Computer Science, Graz University of Technology, Graz, Austria.

出版信息

Biomed Signal Process Control. 2021 May;67. doi: 10.1016/j.bspc.2021.102507. Epub 2021 Mar 5.

Abstract

During daily activities, humans use their hands to grasp surrounding objects and perceive sensory information which are also employed for perceptual and motor goals. Multiple cortical brain regions are known to be responsible for sensory recognition, perception and motor execution during sensorimotor processing. While various research studies particularly focus on the domain of human sensorimotor control, the relation and processing between motor execution and sensory processing is not yet fully understood. Main goal of our work is to discriminate textured surfaces varying in their roughness levels during active tactile exploration using simultaneously recorded electroencephalogram (EEG) data, while minimizing the variance of distinct motor exploration movement patterns. We perform an experimental study with eight healthy participants who were instructed to use the tip of their dominant hand index finger while rubbing or tapping three different textured surfaces with varying levels of roughness. We use an adversarial invariant representation learning neural network architecture that performs EEG-based classification of different textured surfaces, while simultaneously minimizing the discriminability of motor movement conditions (i.e., rub or tap). Results show that the proposed approach can discriminate between three different textured surfaces with accuracies up to 70%, while suppressing movement related variability from learned representations.

摘要

在日常活动中,人类用手抓取周围物体并感知感官信息,这些信息也用于感知和运动目标。已知多个大脑皮层区域在感觉运动处理过程中负责感觉识别、感知和运动执行。虽然各种研究特别关注人类感觉运动控制领域,但运动执行与感觉处理之间的关系和处理方式尚未完全了解。我们工作的主要目标是在使用同步记录的脑电图(EEG)数据进行主动触觉探索期间,区分粗糙度不同的纹理表面,同时尽量减少不同运动探索模式的方差。我们对八名健康参与者进行了一项实验研究,他们被指示用优势手食指的指尖摩擦或轻敲三种粗糙度不同的纹理表面。我们使用一种对抗性不变表示学习神经网络架构,该架构对不同纹理表面进行基于脑电图的分类,同时尽量减少运动条件(即摩擦或轻敲)的可辨别性。结果表明,所提出的方法可以区分三种不同的纹理表面,准确率高达70%,同时抑制学习表示中与运动相关的变异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7657/8078850/b7b1b79f11ff/nihms-1674059-f0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验