Suppr超能文献

基于字典的稀疏表示用于光学相干断层扫描中饱和伪影的修复

Inpainting for Saturation Artifacts in Optical Coherence Tomography Using Dictionary-Based Sparse Representation.

作者信息

Liu Hongshan, Cao Shengting, Ling Yuye, Gan Yu

机构信息

Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487 USA.

John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

IEEE Photonics J. 2021 Apr;13(2). doi: 10.1109/jphot.2021.3056574. Epub 2021 Feb 2.

Abstract

Saturation artifacts in optical coherence tomography (OCT) occur when received signal exceeds the dynamic range of spectrometer. Saturation artifact shows a streaking pattern and could impact the quality of OCT images, leading to inaccurate medical diagnosis. In this paper, we automatically localize saturation artifacts and propose an artifact correction method via inpainting. We adopt a dictionary-based sparse representation scheme for inpainting. Experimental results demonstrate that, in both case of synthetic artifacts and real artifacts, our method outperforms interpolation method and Euler's elastica method in both qualitative and quantitative results. The generic dictionary offers similar image quality when applied to tissue samples which are excluded from dictionary training. This method may have the potential to be widely used in a variety of OCT images for the localization and inpainting of the saturation artifacts.

摘要

当接收到的信号超过光谱仪的动态范围时,光学相干断层扫描(OCT)中就会出现饱和伪影。饱和伪影呈现出条纹状图案,可能会影响OCT图像的质量,导致医学诊断不准确。在本文中,我们自动定位饱和伪影,并提出一种通过图像修复进行伪影校正的方法。我们采用基于字典的稀疏表示方案进行图像修复。实验结果表明,在合成伪影和真实伪影的情况下,我们的方法在定性和定量结果上均优于插值方法和欧拉弹性曲线方法。当应用于未包含在字典训练中的组织样本时,通用字典提供了相似的图像质量。该方法可能具有广泛应用于各种OCT图像中饱和伪影的定位和修复的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f823/8081289/61e7e2bbbb6c/nihms-1678830-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验