Suppr超能文献

用于视乳头周围光学相干断层扫描(OCT)图像中视网膜层和视盘联合分割的多尺度图卷积网络辅助两阶段网络

Multi-scale GCN-assisted two-stage network for joint segmentation of retinal layers and discs in peripapillary OCT images.

作者信息

Li Jiaxuan, Jin Peiyao, Zhu Jianfeng, Zou Haidong, Xu Xun, Tang Min, Zhou Minwen, Gan Yu, He Jiangnan, Ling Yuye, Su Yikai

机构信息

John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, Shanghai 200240, China.

Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai 200040, China.

出版信息

Biomed Opt Express. 2021 Mar 22;12(4):2204-2220. doi: 10.1364/BOE.417212. eCollection 2021 Apr 1.

Abstract

An accurate and automated tissue segmentation algorithm for retinal optical coherence tomography (OCT) images is crucial for the diagnosis of glaucoma. However, due to the presence of the optic disc, the anatomical structure of the peripapillary region of the retina is complicated and is challenging for segmentation. To address this issue, we develop a novel graph convolutional network (GCN)-assisted two-stage framework to simultaneously label the nine retinal layers and the optic disc. Specifically, a multi-scale global reasoning module is inserted between the encoder and decoder of a U-shape neural network to exploit anatomical prior knowledge and perform spatial reasoning. We conduct experiments on human peripapillary retinal OCT images. We also provide public access to the collected dataset, which might contribute to the research in the field of biomedical image processing. The Dice score of the proposed segmentation network is 0.820 ± 0.001 and the pixel accuracy is 0.830 ± 0.002, both of which outperform those from other state-of-the-art techniques.

摘要

一种用于视网膜光学相干断层扫描(OCT)图像的准确且自动化的组织分割算法对于青光眼的诊断至关重要。然而,由于视盘的存在,视网膜乳头周围区域的解剖结构复杂,分割具有挑战性。为了解决这个问题,我们开发了一种新颖的图卷积网络(GCN)辅助的两阶段框架,以同时标记九个视网膜层和视盘。具体来说,在U形神经网络的编码器和解码器之间插入一个多尺度全局推理模块,以利用解剖学先验知识并进行空间推理。我们对人类乳头周围视网膜OCT图像进行了实验。我们还提供了所收集数据集的公共访问权限,这可能有助于生物医学图像处理领域的研究。所提出的分割网络的Dice分数为0.820±0.001,像素准确率为0.830±0.002,两者均优于其他现有技术。

相似文献

1
Multi-scale GCN-assisted two-stage network for joint segmentation of retinal layers and discs in peripapillary OCT images.
Biomed Opt Express. 2021 Mar 22;12(4):2204-2220. doi: 10.1364/BOE.417212. eCollection 2021 Apr 1.
2
Multi-class retinal fluid joint segmentation based on cascaded convolutional neural networks.
Phys Med Biol. 2022 Jun 15;67(12). doi: 10.1088/1361-6560/ac7378.
4
MsTGANet: Automatic Drusen Segmentation From Retinal OCT Images.
IEEE Trans Med Imaging. 2022 Feb;41(2):394-406. doi: 10.1109/TMI.2021.3112716. Epub 2022 Feb 2.
6
MF-Net: Multi-Scale Information Fusion Network for CNV Segmentation in Retinal OCT Images.
Front Neurosci. 2021 Oct 8;15:743769. doi: 10.3389/fnins.2021.743769. eCollection 2021.
7
Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images.
Comput Methods Programs Biomed. 2019 Jul;176:69-80. doi: 10.1016/j.cmpb.2019.04.027. Epub 2019 Apr 24.
9
A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field.
Comput Methods Programs Biomed. 2018 Oct;165:235-250. doi: 10.1016/j.cmpb.2018.09.004. Epub 2018 Sep 5.
10
Self-attention CNN for retinal layer segmentation in OCT.
Biomed Opt Express. 2024 Feb 13;15(3):1605-1617. doi: 10.1364/BOE.510464. eCollection 2024 Mar 1.

引用本文的文献

2
OCT5k: A dataset of multi-disease and multi-graded annotations for retinal layers.
Sci Data. 2025 Feb 14;12(1):267. doi: 10.1038/s41597-024-04259-z.
3
Lightweight Retinal Layer Segmentation With Global Reasoning.
IEEE Trans Instrum Meas. 2024;73. doi: 10.1109/TIM.2024.3400305. Epub 2024 May 21.
4
Fusing multispectral information for retinal layer segmentation.
NPJ Digit Med. 2025 Jan 17;8(1):39. doi: 10.1038/s41746-025-01446-z.
5
Retinal OCT Layer Segmentation via Joint Motion Correction and Graph-Assisted 3D Neural Network.
IEEE Access. 2023;11:103319-103332. doi: 10.1109/access.2023.3317011. Epub 2023 Sep 18.
7
HDB-Net: hierarchical dual-branch network for retinal layer segmentation in diseased OCT images.
Biomed Opt Express. 2024 Aug 19;15(9):5359-5383. doi: 10.1364/BOE.530469. eCollection 2024 Sep 1.
8
Effects of Acute Mental Stress on Choroidal Thickness.
Bioengineering (Basel). 2024 Jul 5;11(7):684. doi: 10.3390/bioengineering11070684.
10
African swine fever virus proteins against host antiviral innate immunity and their implications for vaccine development.
Open Vet J. 2024 Apr;14(4):941-951. doi: 10.5455/OVJ.2024.v14.i4.1. Epub 2024 Apr 30.

本文引用的文献

1
Inpainting for Saturation Artifacts in Optical Coherence Tomography Using Dictionary-Based Sparse Representation.
IEEE Photonics J. 2021 Apr;13(2). doi: 10.1109/jphot.2021.3056574. Epub 2021 Feb 2.
2
ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New Model.
IEEE Trans Med Imaging. 2021 Mar;40(3):928-939. doi: 10.1109/TMI.2020.3042802. Epub 2021 Mar 2.
3
Towards label-free 3D segmentation of optical coherence tomography images of the optic nerve head using deep learning.
Biomed Opt Express. 2020 Oct 15;11(11):6356-6378. doi: 10.1364/BOE.395934. eCollection 2020 Nov 1.
4
IA-net: informative attention convolutional neural network for choroidal neovascularization segmentation in OCT images.
Biomed Opt Express. 2020 Oct 7;11(11):6122-6136. doi: 10.1364/BOE.400816. eCollection 2020 Nov 1.
5
Real-time retinal layer segmentation of OCT volumes with GPU accelerated inferencing using a compressed, low-latency neural network.
Biomed Opt Express. 2020 Jun 24;11(7):3968-3984. doi: 10.1364/BOE.395279. eCollection 2020 Jul 1.
6
Semi-supervised deep learning based 3D analysis of the peripapillary region.
Biomed Opt Express. 2020 Jun 19;11(7):3843-3856. doi: 10.1364/BOE.392648. eCollection 2020 Jul 1.
7
Deep learning based topology guaranteed surface and MME segmentation of multiple sclerosis subjects from retinal OCT.
Biomed Opt Express. 2019 Sep 12;10(10):5042-5058. doi: 10.1364/BOE.10.005042. eCollection 2019 Oct 1.
9
Joint retina segmentation and classification for early glaucoma diagnosis.
Biomed Opt Express. 2019 Apr 30;10(5):2639-2656. doi: 10.1364/BOE.10.002639. eCollection 2019 May 1.
10
CE-Net: Context Encoder Network for 2D Medical Image Segmentation.
IEEE Trans Med Imaging. 2019 Oct;38(10):2281-2292. doi: 10.1109/TMI.2019.2903562. Epub 2019 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验