Suppr超能文献

用于可视化多种光谱重叠荧光标记的高光谱多光子显微镜。

Hyperspectral multiphoton microscopy for visualization of multiple, spectrally overlapped fluorescent labels.

作者信息

Bares Amanda J, Mejooli Menansili A, Pender Mitchell A, Leddon Scott A, Tilley Steven, Lin Karen, Dong Jingyuan, Kim Minsoo, Fowell Deborah J, Nishimura Nozomi, Schaffer Chris B

机构信息

The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.

Center for Vaccine Biology and Immunology, Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.

出版信息

Optica. 2020 Nov 20;7(11):1587-1601. doi: 10.1364/optica.389982.

Abstract

The insensitivity of multiphoton microscopy to optical scattering enables high-resolution, high-contrast imaging deep into tissue, including in live animals. Scattering does, however, severely limit the use of spectral dispersion techniques to improve spectral resolution. In practice, this limited spectral resolution together with the need for multiple excitation wavelengths to excite different fluorophores limits multiphoton microscopy to imaging a few, spectrally-distinct fluorescent labels at a time, restricting the complexity of biological processes that can be studied. Here, we demonstrate a hyperspectral multiphoton microscope that utilizes three different wavelength excitation sources together with multiplexed fluorescence emission detection using angle-tuned bandpass filters. This microscope maintains scattering insensitivity, while providing high enough spectral resolution on the emitted fluorescence and capitalizing on the wavelength-dependent nonlinear excitation of fluorescent dyes to enable clean separation of multiple, spectrally overlapping labels, . We demonstrated the utility of this instrument for spectral separation of closely-overlapped fluorophores in samples containing ten different colors of fluorescent beads, live cells expressing up to seven different fluorescent protein fusion constructs, and in multiple preparations in mouse cortex and inflamed skin with up to eight different cell types or tissue structures distinguished.

摘要

多光子显微镜对光学散射不敏感,能够对组织深处进行高分辨率、高对比度成像,包括在活体动物中。然而,散射确实严重限制了光谱色散技术用于提高光谱分辨率。实际上,这种有限的光谱分辨率以及需要多个激发波长来激发不同荧光团,使得多光子显微镜一次只能对少数几个光谱上不同的荧光标记进行成像,限制了可研究的生物过程的复杂性。在这里,我们展示了一种高光谱多光子显微镜,它利用三种不同波长的激发源以及使用角度调谐带通滤波器的多路复用荧光发射检测。这种显微镜保持对散射不敏感,同时在发射的荧光上提供足够高的光谱分辨率,并利用荧光染料的波长依赖性非线性激发来实现多个光谱重叠标记的清晰分离。我们展示了该仪器在含有十种不同颜色荧光珠的样品、表达多达七种不同荧光蛋白融合构建体的活细胞以及小鼠皮层和炎症皮肤的多种制剂中对紧密重叠荧光团进行光谱分离的效用,其中可区分多达八种不同的细胞类型或组织结构。

相似文献

3
Super-multiplexed fluorescence microscopy via photostability contrast.通过光稳定性对比度实现的超多重荧光显微镜技术。
Biomed Opt Express. 2018 Jun 6;9(7):2943-2954. doi: 10.1364/BOE.9.002943. eCollection 2018 Jul 1.
5
Multiplexed Spectral Imaging of 120 Different Fluorescent Labels.120种不同荧光标记的多重光谱成像
PLoS One. 2016 Jul 8;11(7):e0158495. doi: 10.1371/journal.pone.0158495. eCollection 2016.

引用本文的文献

4
Multiphoton intravital microscopy of rodents.啮齿动物的多光子活体显微镜检查
Nat Rev Methods Primers. 2022;2. doi: 10.1038/s43586-022-00168-w. Epub 2022 Nov 10.
6
Intravital imaging to study cancer progression and metastasis.活体成像技术在癌症进展和转移研究中的应用。
Nat Rev Cancer. 2023 Jan;23(1):25-42. doi: 10.1038/s41568-022-00527-5. Epub 2022 Nov 16.
7
Denoising multiplexed microscopy images in n-dimensional spectral space.在n维光谱空间中对多路复用显微镜图像进行去噪
Biomed Opt Express. 2022 Jul 22;13(8):4298-4309. doi: 10.1364/BOE.463979. eCollection 2022 Aug 1.

本文引用的文献

1
UNMIX-ME: spectral and lifetime fluorescence unmixing via deep learning.UNMIX-ME:通过深度学习实现光谱和寿命荧光解混
Biomed Opt Express. 2020 Jun 19;11(7):3857-3874. doi: 10.1364/BOE.391992. eCollection 2020 Jul 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验