School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
Sci Adv. 2021 Mar 17;7(12). doi: 10.1126/sciadv.abf3531. Print 2021 Mar.
Multiphoton fluorescence microscopy is a powerful technique for deep-tissue observation of living cells. In particular, three-photon microscopy is highly beneficial for deep-tissue imaging because of the long excitation wavelength and the high nonlinear confinement in living tissues. Because of the large spectral separation of fluorophores of different color, multicolor three-photon imaging typically requires multiple excitation wavelengths. Here, we report a new three-photon excitation scheme: excitation to a higher-energy electronic excited state instead of the conventional excitation to the lowest-energy excited state, enabling multicolor three-photon fluorescence imaging with deep-tissue penetration in the living mouse brain using single-wavelength excitation. We further demonstrate that our excitation method results in ≥10-fold signal enhancement for some of the common red fluorescent molecules. The multicolor imaging capability and the possibility of enhanced three-photon excitation cross section will open new opportunities for life science applications of three-photon microscopy.
多光子荧光显微镜是一种用于活细胞深层组织观察的强大技术。特别是,由于长激发波长和活体组织中的高非线性限制,三光子显微镜对深层组织成像非常有益。由于不同颜色荧光团的光谱分离较大,多色三光子成像通常需要多个激发波长。在这里,我们报告了一种新的三光子激发方案:激发到更高能量的电子激发态,而不是传统的激发到最低能量激发态,从而可以使用单波长激发在活体小鼠大脑中进行深层组织穿透的多色三光子荧光成像。我们进一步证明,我们的激发方法可使一些常见的红色荧光分子的信号增强 10 倍以上。多色成像能力和增强的三光子激发截面的可能性将为三光子显微镜在生命科学中的应用开辟新的机会。