Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China.
J Am Chem Soc. 2021 May 12;143(18):6922-6932. doi: 10.1021/jacs.1c00547. Epub 2021 Apr 30.
The capture of sustainable energy from a salinity gradient, in particular, using renewable biomass-derived functional materials, has attracted significant attention. In order to convert osmotic energy to electricity, many membrane materials with nanofluidic channels have been developed. However, the high cost, complex preparation process, and low output power density still restrict the practical application of traditional membranes. Herein, we report the synthesis of highly flexible and mechanically robust nanofiber-arrays-based carbonaceous ordered mesoporous nanowires (CMWs) through a simple and straightforward soft-templating hydrothermal carbonization approach. This sequential superassembly strategy shows a high yield and great versatility in controlling the dimensions of CMWs with the aspect ratio changes from about 3 to 39. Furthermore, these CMWs can be used as novel building blocks to construct functional hybrid membranes on macroporous alumina. This nanofluidic membrane with asymmetric geometry and charge polarity exhibits low resistance and high-performance energy conversion. This work opens a solution-based route for the one-pot preparation of CMWs and functional heterostructure membranes for various applications.
从盐度梯度中捕获可持续能源,特别是利用可再生生物质衍生的功能材料,引起了人们的极大关注。为了将渗透能转化为电能,已经开发了许多具有纳米流道的膜材料。然而,高成本、复杂的制备工艺和低输出功率密度仍然限制了传统膜的实际应用。在此,我们通过简单直接的软模板水热碳化方法,报道了高度灵活和机械坚固的基于纳米纤维阵列的碳质有序介孔纳米线(CMWs)的合成。这种顺序超组装策略在控制 CMWs 的尺寸方面具有高收率和多功能性,其纵横比从约 3 变化到 39。此外,这些 CMWs 可用作新型建筑块,在大孔氧化铝上构建功能性杂化膜。这种具有不对称几何形状和电荷极性的纳米流道膜具有低电阻和高性能的能量转换。这项工作为 CMWs 的一锅法制备以及各种应用的功能异质结构膜开辟了一条基于溶液的途径。