Suppr超能文献

基于共聚类的隐马尔可夫模型(EMHMM)的眼动分析。

Eye movement analysis with hidden Markov models (EMHMM) with co-clustering.

机构信息

Department of Psychology, University of Hong Kong, Pok Fu Lam, Hong Kong.

The State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong.

出版信息

Behav Res Methods. 2021 Dec;53(6):2473-2486. doi: 10.3758/s13428-021-01541-5. Epub 2021 Apr 30.

Abstract

The eye movement analysis with hidden Markov models (EMHMM) method provides quantitative measures of individual differences in eye-movement pattern. However, it is limited to tasks where stimuli have the same feature layout (e.g., faces). Here we proposed to combine EMHMM with the data mining technique co-clustering to discover participant groups with consistent eye-movement patterns across stimuli for tasks involving stimuli with different feature layouts. Through applying this method to eye movements in scene perception, we discovered explorative (switching between the foreground and background information or different regions of interest) and focused (mainly looking at the foreground with less switching) eye-movement patterns among Asian participants. Higher similarity to the explorative pattern predicted better foreground object recognition performance, whereas higher similarity to the focused pattern was associated with better feature integration in the flanker task. These results have important implications for using eye tracking as a window into individual differences in cognitive abilities and styles. Thus, EMHMM with co-clustering provides quantitative assessments on eye-movement patterns across stimuli and tasks. It can be applied to many other real-life visual tasks, making a significant impact on the use of eye tracking to study cognitive behavior across disciplines.

摘要

使用隐马尔可夫模型(EMHMM)的眼动分析方法为眼动模式的个体差异提供了定量的度量。然而,它仅限于刺激具有相同特征布局的任务(例如,面孔)。在这里,我们提出将 EMHMM 与数据挖掘技术的协同聚类相结合,以发现具有一致眼动模式的参与者群体,这些模式适用于涉及具有不同特征布局的刺激的任务。通过将这种方法应用于场景感知中的眼动,我们在亚洲参与者中发现了探索性(在前景和背景信息或不同的兴趣区域之间切换)和聚焦性(主要注视前景,较少切换)的眼动模式。与探索性模式的相似度越高,预测的前景对象识别性能越好,而与聚焦性模式的相似度越高,在侧翼任务中的特征整合越好。这些结果对于使用眼动追踪作为了解认知能力和风格个体差异的窗口具有重要意义。因此,具有协同聚类的 EMHMM 为跨刺激和任务的眼动模式提供了定量评估。它可以应用于许多其他现实生活中的视觉任务,对跨学科使用眼动追踪研究认知行为产生重大影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76ef/8613150/121abf798ba3/13428_2021_1541_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验