Suppr超能文献

基于深度学习的英国生物银行和德国国家队列磁共振成像研究中腹部器官的自动分割。

Deep Learning-Based Automated Abdominal Organ Segmentation in the UK Biobank and German National Cohort Magnetic Resonance Imaging Studies.

机构信息

From the Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK.

Medical Image and Data Analysis Lab, Department of Radiology, University Hospital Tübingen, Tübingen, Germany.

出版信息

Invest Radiol. 2021 Jun 1;56(6):401-408. doi: 10.1097/RLI.0000000000000755.

Abstract

PURPOSE

The aims of this study were to train and evaluate deep learning models for automated segmentation of abdominal organs in whole-body magnetic resonance (MR) images from the UK Biobank (UKBB) and German National Cohort (GNC) MR imaging studies and to make these models available to the scientific community for analysis of these data sets.

METHODS

A total of 200 T1-weighted MR image data sets of healthy volunteers each from UKBB and GNC (400 data sets in total) were available in this study. Liver, spleen, left and right kidney, and pancreas were segmented manually on all 400 data sets, providing labeled ground truth data for training of a previously described U-Net-based deep learning framework for automated medical image segmentation (nnU-Net). The trained models were tested on all data sets using a 4-fold cross-validation scheme. Qualitative analysis of automated segmentation results was performed visually; performance metrics between automated and manual segmentation results were computed for quantitative analysis. In addition, interobserver segmentation variability between 2 human readers was assessed on a subset of the data.

RESULTS

Automated abdominal organ segmentation was performed with high qualitative and quantitative accuracy on UKBB and GNC data. In more than 90% of data sets, no or only minor visually detectable qualitative segmentation errors occurred. Mean Dice scores of automated segmentations compared with manual reference segmentations were well higher than 0.9 for the liver, spleen, and kidneys on UKBB and GNC data and around 0.82 and 0.89 for the pancreas on UKBB and GNC data, respectively. Mean average symmetric surface distance was between 0.3 and 1.5 mm for the liver, spleen, and kidneys and between 2 and 2.2 mm for pancreas segmentation. The quantitative accuracy of automated segmentation was comparable with the agreement between 2 human readers for all organs on UKBB and GNC data.

CONCLUSION

Automated segmentation of abdominal organs is possible with high qualitative and quantitative accuracy on whole-body MR imaging data acquired as part of UKBB and GNC. The results obtained and deep learning models trained in this study can be used as a foundation for automated analysis of thousands of MR data sets of UKBB and GNC and thus contribute to tackling topical and original scientific questions.

摘要

目的

本研究的目的是训练和评估深度学习模型,以实现对来自英国生物库(UKBB)和德国国家队列(GNC)磁共振成像研究的全身磁共振(MR)图像中腹部器官的自动分割,并将这些模型提供给科学界,用于对这些数据集进行分析。

方法

本研究共使用了 200 名 UKBB 和 GNC 健康志愿者的 T1 加权 MR 图像数据集(总共 400 个数据集)。在所有 400 个数据集上手动分割肝脏、脾脏、左肾和右肾以及胰腺,为之前描述的基于 U-Net 的深度学习框架(nnU-Net)的自动医学图像分割提供了标记的真实数据。使用 4 折交叉验证方案对训练好的模型在所有数据集上进行测试。通过目视法对自动分割结果进行定性分析;计算了自动分割结果与手动分割结果之间的性能指标。此外,还在数据集的一个子集上评估了 2 名人类读者之间的分割变异性。

结果

在 UKBB 和 GNC 数据上,自动腹部器官分割具有较高的定性和定量准确性。在超过 90%的数据集中,没有或只有轻微的可察觉的定性分割错误。与手动参考分割相比,UKBB 和 GNC 数据的肝脏、脾脏和肾脏的平均 Dice 评分均高于 0.9,UKBB 和 GNC 数据的胰腺的平均 Dice 评分分别约为 0.82 和 0.89。肝脏、脾脏和肾脏的平均平均对称面距离在 0.3 到 1.5 毫米之间,而胰腺的平均平均对称面距离在 2 到 2.2 毫米之间。在 UKBB 和 GNC 数据上,所有器官的自动分割的定量准确性与 2 名人类读者之间的一致性相当。

结论

在 UKBB 和 GNC 采集的全身 MR 成像数据上,自动分割腹部器官可以达到较高的定性和定量准确性。本研究中获得的结果和训练的深度学习模型可以作为自动分析 UKBB 和 GNC 数千个 MR 数据集的基础,从而有助于解决热门和原始的科学问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验