Suppr超能文献

考虑到不完美的检测性能和混样稀释效应,对 COVID-19 进行合并检测的最佳利用:在洛杉矶县的集体环境中的应用。

Optimal uses of pooled testing for COVID-19 incorporating imperfect test performance and pool dilution effect: An application to congregate settings in Los Angeles County.

机构信息

Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, California, USA.

California Center for Population Research, Los Angeles, California, USA.

出版信息

J Med Virol. 2021 Sep;93(9):5396-5404. doi: 10.1002/jmv.27054. Epub 2021 May 27.

Abstract

INTRODUCTION

Pooled testing is a potentially efficient alternative strategy for COVID-19 testing in congregate settings. We evaluated the utility and cost-savings of pooled testing based on imperfect test performance and potential dilution effect due to pooling and created a practical calculator for online use.

METHODS

We developed a 2-stage pooled testing model accounting for dilution. The model was applied to hypothetical scenarios of 100 specimens collected during a one-week time-horizon cycle for varying levels of COVID-19 prevalence and test sensitivity and specificity, and to 338 skilled nursing facilities (SNFs) in Los Angeles County (Los Angeles) (data collected and analyzed in 2020).

RESULTS

Optimal pool sizes ranged from 1 to 12 in instances where there is a least one case in the batch of specimens. 40% of Los Angeles SNFs had more than one case triggering a response-testing strategy. The median number (minimum; maximum) of tests performed per facility were 56 (14; 356) for a pool size of 4, 64 (13; 429) for a pool size of 10, and 52 (11; 352) for an optimal pool size strategy among response-testing facilities. The median costs of tests in response-testing facilities were $8250 ($1100; $46,100), $6000 ($1340; $37,700), $6820 ($1260; $43,540), and $5960 ($1100; $37,380) when adopting individual testing, a pooled testing strategy using pool sizes of 4, 10, and optimal pool size, respectively.

CONCLUSIONS

Pooled testing is an efficient strategy for congregate settings with a low prevalence of COVID-19. Dilution as a result of pooling can lead to erroneous false-negative results.

摘要

简介

在聚集性环境中, pooled testing 是一种潜在高效的 COVID-19 检测替代策略。我们评估了 pooled testing 的效用和成本节约,考虑到检测的不完美性能以及 pooling 导致的潜在稀释效应,并创建了一个实用的在线计算器。

方法

我们开发了一个两阶段 pooled testing 模型,考虑了稀释效应。该模型应用于不同 COVID-19 流行率和检测灵敏度和特异性水平的 100 个标本在一周时间内采集的假设场景,以及洛杉矶县(洛杉矶)的 338 个熟练护理设施(SNF)(2020 年收集和分析的数据)。

结果

在一批标本中至少有一个病例的情况下,最优池大小范围从 1 到 12。40%的洛杉矶 SNF 有超过一个病例触发反应性检测策略。对于池大小为 4 的 pooled testing,每个设施进行的测试中位数(最小值;最大值)为 56(14;356),对于池大小为 10 的 pooled testing,为 64(13;429),对于反应性检测设施中的最优池大小策略,为 52(11;352)。在反应性检测设施中,采用个体检测、pool 大小为 4、10 和最优池大小的 pooled testing 策略,测试的中位数成本分别为 8250 美元(1100 美元;46100 美元)、6000 美元(1340 美元;37700 美元)、6820 美元(1260 美元;43540 美元)和 5960 美元(1100 美元;37380 美元)。

结论

Pooled testing 是 COVID-19 低流行率聚集性环境的有效策略。Pooling 导致的稀释可能导致错误的假阴性结果。

相似文献

3
Evaluation of sample pooling for screening of SARS CoV-2.用于 SARS-CoV-2 筛查的样本混合评估。
PLoS One. 2021 Feb 26;16(2):e0247767. doi: 10.1371/journal.pone.0247767. eCollection 2021.

引用本文的文献

本文引用的文献

7
Group testing case identification with biomarker information.利用生物标志物信息进行分组检测病例识别。
Comput Stat Data Anal. 2018 Jun;122:156-166. doi: 10.1016/j.csda.2018.01.005. Epub 2018 Feb 1.
9
Regression models for group testing data with pool dilution effects.带有池稀释效应的成组检测数据的回归模型。
Biostatistics. 2013 Apr;14(2):284-98. doi: 10.1093/biostatistics/kxs045. Epub 2012 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验