Suppr超能文献

研究生医学培训中隐性的性别-职业偏见仍然存在,主要存在于住院医师和女性群体中。

Implicit gender-career bias in postgraduate medical training still exists, mainly in residents and in females.

作者信息

Kramer Maud, Heyligers Ide C, Könings Karen D

机构信息

School of Health Professions Education (SHE), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.

Department of Orthopaedic Surgery and Traumatology, Zuyderland Medical Centre, Heerlen, The Netherlands.

出版信息

BMC Med Educ. 2021 May 2;21(1):253. doi: 10.1186/s12909-021-02694-9.

Abstract

BACKGROUND

More and more female residents enter postgraduate medical training (PGMT). Meanwhile, women are still underrepresented in academic medicine, in leadership positions and in most surgical specialties. This suggests that female residents' career development may still be negatively impacted by subtle, often unconscious stereotype associations regarding gender and career-ambition, called implicit gender-career bias. This study explored the existence and strength of implicit gender-career bias in doctors who currently work in PGMT, i.e. in attending physicians who act as clinical trainers and in their residents.

METHODS

We tested implicit gender-career bias in doctors working in PGMT by means of an online questionnaire and an online Implicit Association Test (IAT). We used standard IAT analysis to calculate participants' IAT D scores, which indicate the direction and strength of bias. Linear regression analyses were used to test whether the strength of bias was related to gender, position (resident or clinical trainer) or specialty (non-surgical or surgical specialty).

RESULTS

The mean IAT D score among 403 participants significantly differed from zero (D-score = 0.36 (SD = 0.39), indicating bias associating male with career and female with family. Stronger gender-career bias was found in women (β =0 .11; CI 0.02; 0.19; p = 0.01) and in residents (β 0.12; CI 0.01; 0.23; p = 0.03).

CONCLUSIONS

This study may provide a solid basis for explicitly addressing implicit gender-career bias in PGMT. The general understanding in the medical field is that gender bias is strongest among male doctors' in male-dominated surgical specialties. Contrary to this view, this study demonstrated that the strongest bias is held by females themselves and by residents, independently of their specialty. Apparently, the influx of female doctors in the medical field has not yet reduced implicit gender-career bias in the next generation of doctors, i.e. in today's residents, and in females.

摘要

背景

越来越多的女性住院医师进入医学研究生培训(PGMT)阶段。与此同时,在学术医学领域、领导岗位以及大多数外科专业中,女性的代表性仍然不足。这表明女性住院医师的职业发展可能仍受到关于性别和职业抱负的微妙、往往无意识的刻板印象关联的负面影响,即隐性性别职业偏见。本研究探讨了目前从事PGMT工作的医生,即担任临床培训师的主治医师及其住院医师中隐性性别职业偏见的存在情况和程度。

方法

我们通过在线问卷和在线内隐联想测验(IAT)对从事PGMT工作的医生的隐性性别职业偏见进行了测试。我们使用标准的IAT分析来计算参与者的IAT D分数,该分数表明偏见的方向和程度。线性回归分析用于测试偏见程度是否与性别、职位(住院医师或临床培训师)或专业(非外科或外科专业)相关。

结果

403名参与者的平均IAT D分数显著不同于零(D分数 = 0.36(标准差 = 0.39)),表明存在将男性与职业、女性与家庭联系起来的偏见。在女性(β = 0.11;置信区间0.02;0.19;p = 0.01)和住院医师(β = 0.12;置信区间0.01;0.23;p = 0.03)中发现了更强的性别职业偏见。

结论

本研究可能为明确解决PGMT中的隐性性别职业偏见提供坚实基础。医学领域的普遍认识是,在男性主导的外科专业中,男性医生的性别偏见最为严重。与这种观点相反,本研究表明,最强的偏见是由女性自身和住院医师持有,与他们的专业无关。显然,医学领域女性医生的涌入尚未减少下一代医生,即当今的住院医师和女性中的隐性性别职业偏见。

相似文献

4
Implicit gender bias among US resident physicians.美国住院医师中存在隐性性别偏见。
BMC Med Educ. 2019 Oct 29;19(1):396. doi: 10.1186/s12909-019-1818-1.
7
[Longitudinal evaluation of female and male medical residents' career satisfaction].[女性和男性住院医师职业满意度的纵向评估]
Z Evid Fortbild Qual Gesundhwes. 2019 Nov;147-148:103-109. doi: 10.1016/j.zefq.2019.09.004. Epub 2019 Oct 18.

引用本文的文献

2
Gender Distribution in Paediatric Cardiology Training Programs in Canada.加拿大儿科心脏病学培训项目中的性别分布情况。
CJC Pediatr Congenit Heart Dis. 2024 Sep 15;3(6):241-246. doi: 10.1016/j.cjcpc.2024.09.002. eCollection 2024 Dec.

本文引用的文献

6
Implicit gender bias among US resident physicians.美国住院医师中存在隐性性别偏见。
BMC Med Educ. 2019 Oct 29;19(1):396. doi: 10.1186/s12909-019-1818-1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验