Suppr超能文献

预测类风湿关节炎患者对托珠单抗单药治疗的反应:基于机器学习的真实世界数据分析。

Predicting Response to Tocilizumab Monotherapy in Rheumatoid Arthritis: A Real-world Data Analysis Using Machine Learning.

机构信息

F.D. Johansson, Assistant Professor, PhD, Department of Computer Science and Engineering, Chalmers University of Technology, Göteborg, Sweden;

J.E. Collins, Assistant Professor, PhD, E. Losina, PhD, Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA.

出版信息

J Rheumatol. 2021 Sep;48(9):1364-1370. doi: 10.3899/jrheum.201626. Epub 2021 May 1.

Abstract

OBJECTIVE

Tocilizumab (TCZ) has shown similar efficacy when used as monotherapy as in combination with other treatments for rheumatoid arthritis (RA) in randomized controlled trials (RCTs). We derived a remission prediction score for TCZ monotherapy (TCZm) using RCT data and performed an external validation of the prediction score using real-world data (RWD).

METHODS

We identified patients in the Corrona RA registry who used TCZm (n = 452), and matched the design and patients from 4 RCTs used in previous work (n = 853). Patients were followed to determine remission status at 24 weeks. We compared the performance of remission prediction models in RWD, first based on variables determined in our prior work in RCTs, and then using an extended variable set, comparing logistic regression and random forest models. We included patients on other biologic disease-modifying antirheumatic drug monotherapies (bDMARDm) to improve prediction.

RESULTS

The fraction of patients observed reaching remission on TCZm by their follow-up visit was 12% (n = 53) in RWD vs 15% (n = 127) in RCTs. Discrimination was good in RWD for the risk score developed in RCTs, with area under the receiver-operating characteristic curve (AUROC) of 0.69 (95% CI 0.62-0.75). Fitting the same logistic regression model to all bDMARDm patients in the RWD improved the AUROC on held-out TCZm patients to 0.72 (95% CI 0.63-0.81). Extending the variable set and adding regularization further increased it to 0.76 (95% CI 0.67-0.84).

CONCLUSION

The remission prediction scores, derived in RCTs, discriminated patients in RWD about as well as in RCTs. Discrimination was further improved by retraining models on RWD.

摘要

目的

托珠单抗(TCZ)在随机对照试验(RCT)中作为单药治疗或与其他治疗类风湿关节炎(RA)的药物联合使用时显示出相似的疗效。我们使用 RCT 数据为 TCZ 单药治疗(TCZm)推导了一个缓解预测评分,并使用真实世界数据(RWD)对预测评分进行了外部验证。

方法

我们在 Corrona RA 登记处中确定了使用 TCZm(n=452)的患者,并与之前工作中使用的 4 项 RCT 中的设计和患者相匹配(n=853)。患者接受随访以确定 24 周时的缓解状态。我们首先根据之前在 RCT 中确定的变量比较了 RWD 中缓解预测模型的性能,然后使用扩展的变量集比较了逻辑回归和随机森林模型。我们纳入了其他生物疾病修正抗风湿药物单药治疗(bDMARDm)的患者,以提高预测效果。

结果

在 RWD 中,通过随访观察到 TCZm 达到缓解的患者比例为 12%(n=53),而在 RCT 中为 15%(n=127)。对于在 RCT 中开发的风险评分,RWD 中的区分度很好,接受者操作特征曲线下面积(AUROC)为 0.69(95%CI 0.62-0.75)。将相同的逻辑回归模型应用于 RWD 中所有 bDMARDm 患者,可将 AUROC 提高到 TCZm 患者的 0.72(95%CI 0.63-0.81)。扩展变量集并增加正则化进一步将其提高到 0.76(95%CI 0.67-0.84)。

结论

在 RCT 中推导的缓解预测评分在 RWD 中与在 RCT 中一样能够很好地区分患者。通过在 RWD 上重新训练模型,区分度进一步提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验