Suppr超能文献

机器学习在风湿和肌肉骨骼疾病中的临床应用和研究的叙述性综述:偏倚、目标和未来方向。

Narrative Review of Machine Learning in Rheumatic and Musculoskeletal Diseases for Clinicians and Researchers: Biases, Goals, and Future Directions.

机构信息

A.E. Nelson, MD, MSCR, Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina at Chapel Hill;

L. Arbeeva, MS, Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

出版信息

J Rheumatol. 2022 Nov;49(11):1191-1200. doi: 10.3899/jrheum.220326. Epub 2022 Jul 15.

Abstract

There has been rapid growth in the use of artificial intelligence (AI) analytics in medicine in recent years, including in rheumatic and musculoskeletal diseases (RMDs). Such methods represent a challenge to clinicians, patients, and researchers, given the "black box" nature of most algorithms, the unfamiliarity of the terms, and the lack of awareness of potential issues around these analyses. Therefore, this review aims to introduce this subject area in a way that is relevant and meaningful to clinicians and researchers. We hope to provide some insights into relevant strengths and limitations, reporting guidelines, as well as recent examples of such analyses in key areas, with a focus on lessons learned and future directions in diagnosis, phenotyping, prognosis, and precision medicine in RMDs.

摘要

近年来,人工智能(AI)分析在医学中的应用迅速增长,包括在风湿和肌肉骨骼疾病(RMDs)中。鉴于大多数算法的“黑盒”性质、术语的不熟悉以及对这些分析潜在问题的认识不足,这些方法对临床医生、患者和研究人员构成了挑战。因此,本综述旨在以与临床医生和研究人员相关且有意义的方式介绍这一主题领域。我们希望提供一些关于相关优势和局限性、报告准则的见解,以及在关键领域中此类分析的最新示例,重点是在 RMD 中的诊断、表型、预后和精准医学方面的经验教训和未来方向。

相似文献

2
Artificial intelligence and laboratory data in rheumatic diseases.人工智能与风湿性疾病的实验室数据。
Clin Chim Acta. 2023 Jun 1;546:117388. doi: 10.1016/j.cca.2023.117388. Epub 2023 May 13.
5
Current state and prospects of artificial intelligence in allergy.人工智能在过敏领域的现状与展望。
Allergy. 2023 Oct;78(10):2623-2643. doi: 10.1111/all.15849. Epub 2023 Aug 16.
10
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

本文引用的文献

1
Data Integration Challenges for Machine Learning in Precision Medicine.精准医学中机器学习的数据整合挑战
Front Med (Lausanne). 2022 Jan 25;8:784455. doi: 10.3389/fmed.2021.784455. eCollection 2021.
10
Opportunities and Challenges for Machine Learning in Rare Diseases.机器学习在罕见病领域的机遇与挑战
Front Med (Lausanne). 2021 Oct 5;8:747612. doi: 10.3389/fmed.2021.747612. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验