Suppr超能文献

使用基于电压振荡(VO)的相位编码逻辑的振荡神经网络。

Oscillatory Neural Networks Using VO Based Phase Encoded Logic.

作者信息

Núñez Juan, Avedillo María J, Jiménez Manuel, Quintana José M, Todri-Sanial Aida, Corti Elisabetta, Karg Siegfried, Linares-Barranco Bernabé

机构信息

Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC and Universidad de Sevilla, Seville, Spain.

Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), University of Montpellier, Montpellier, France.

出版信息

Front Neurosci. 2021 Apr 16;15:655823. doi: 10.3389/fnins.2021.655823. eCollection 2021.

Abstract

Nano-oscillators based on phase-transition materials are being explored for the implementation of different non-conventional computing paradigms. In particular, vanadium dioxide (VO) devices are used to design autonomous non-linear oscillators from which oscillatory neural networks (ONNs) can be developed. In this work, we propose a new architecture for ONNs in which sub-harmonic injection locking (SHIL) is exploited to ensure that the phase information encoded in each neuron can only take two values. In this sense, the implementation of ONNs from neurons that inherently encode information with two-phase values has advantages in terms of robustness and tolerance to variability present in VO devices. Unlike conventional interconnection schemes, in which the sign of the weights is coded in the value of the resistances, in our proposal the negative (positive) weights are coded using static inverting (non-inverting) logic at the output of the oscillator. The operation of the proposed architecture is shown for pattern recognition applications.

摘要

基于相变材料的纳米振荡器正在被探索用于实现不同的非传统计算范式。特别是,二氧化钒(VO)器件被用于设计自主非线性振荡器,从中可以开发出振荡神经网络(ONN)。在这项工作中,我们提出了一种用于ONN的新架构,其中利用次谐波注入锁定(SHIL)来确保每个神经元中编码的相位信息只能取两个值。从这个意义上说,从固有地用两相值编码信息的神经元实现ONN在VO器件中存在的鲁棒性和对变异性的耐受性方面具有优势。与传统的互连方案不同,在传统方案中权重的符号编码在电阻值中,在我们的提议中,负(正)权重是在振荡器输出处使用静态反相(非反相)逻辑进行编码的。所提出的架构的操作在模式识别应用中得到了展示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bca3/8085264/8679e21dad89/fnins-15-655823-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验