Corti Elisabetta, Cornejo Jimenez Joaquin Antonio, Niang Kham M, Robertson John, Moselund Kirsten E, Gotsmann Bernd, Ionescu Adrian M, Karg Siegfried
IBM Research Zürich, Rüschlikon, Switzerland.
Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
Front Neurosci. 2021 Feb 11;15:628254. doi: 10.3389/fnins.2021.628254. eCollection 2021.
In this work we present an in-memory computing platform based on coupled VO oscillators fabricated in a crossbar configuration on silicon. Compared to existing platforms, the crossbar configuration promises significant improvements in terms of area density and oscillation frequency. Further, the crossbar devices exhibit low variability and extended reliability, hence, enabling experiments on 4-coupled oscillator. We demonstrate the neuromorphic computing capabilities using the phase relation of the oscillators. As an application, we propose to replace digital filtering operation in a convolutional neural network with oscillating circuits. The concept is tested with a VGG13 architecture on the MNIST dataset, achieving performances of 95% in the recognition task.
在这项工作中,我们展示了一种基于耦合VO振荡器的内存计算平台,该振荡器以交叉开关配置制造在硅片上。与现有平台相比,交叉开关配置在面积密度和振荡频率方面有望实现显著改进。此外,交叉开关器件具有低变异性和高可靠性,因此能够进行4耦合振荡器的实验。我们利用振荡器的相位关系展示了神经形态计算能力。作为一种应用,我们提议用振荡电路取代卷积神经网络中的数字滤波操作。该概念在MNIST数据集上使用VGG13架构进行了测试,在识别任务中实现了95%的性能。